LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction
Measurement(s) Low Dose Computed Tomography of the Chest • feature extraction objective Technology Type(s) digital curation • image processing technique Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.13...
Enregistré dans:
Auteurs principaux: | Johannes Leuschner, Maximilian Schmidt, Daniel Otero Baguer, Peter Maass |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6a2f386a28994aa6a8db73f70a355873 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Conditional Invertible Neural Networks for Medical Imaging
par: Alexander Denker, et autres
Publié: (2021) -
BSE49, a diverse, high-quality benchmark dataset of separation energies of chemical bonds
par: Viki Kumar Prasad, et autres
Publié: (2021) -
An experimental phylogeny to benchmark ancestral sequence reconstruction
par: Ryan N. Randall, et autres
Publié: (2016) -
COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning
par: Parnian Afshar, et autres
Publié: (2021) -
Discriminative Prior - Prior Image Constrained Compressed Sensing Reconstruction for Low-Dose CT Imaging
par: Yang Chen, et autres
Publié: (2017)