Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains

Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second orde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhang Junqiang, Yang Dachun, Yang Sibei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
bmo
Acceso en línea:https://doaj.org/article/6a440974c9924781a21e14cd312b303d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second order degenerate elliptic equations in divergence form with Dirichlet boundary condition, under the assumption that the degenerate coefficients belong to weighted BMO spaces with small norms.