Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains

Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second orde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhang Junqiang, Yang Dachun, Yang Sibei
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
bmo
Acceso en línea:https://doaj.org/article/6a440974c9924781a21e14cd312b303d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6a440974c9924781a21e14cd312b303d
record_format dspace
spelling oai:doaj.org-article:6a440974c9924781a21e14cd312b303d2021-12-05T14:10:40ZWeighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains2191-94962191-950X10.1515/anona-2021-0206https://doaj.org/article/6a440974c9924781a21e14cd312b303d2021-10-01T00:00:00Zhttps://doi.org/10.1515/anona-2021-0206https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XLet w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second order degenerate elliptic equations in divergence form with Dirichlet boundary condition, under the assumption that the degenerate coefficients belong to weighted BMO spaces with small norms.Zhang JunqiangYang DachunYang SibeiDe Gruyterarticlereifenberg flat domaindegenerate elliptic equationmuckenhoupt weightvariable lebesgue spacebmoprimary 35j70secondary 35b6546e3542b3542b37AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 535-579 (2021)
institution DOAJ
collection DOAJ
language EN
topic reifenberg flat domain
degenerate elliptic equation
muckenhoupt weight
variable lebesgue space
bmo
primary 35j70
secondary 35b65
46e35
42b35
42b37
Analysis
QA299.6-433
spellingShingle reifenberg flat domain
degenerate elliptic equation
muckenhoupt weight
variable lebesgue space
bmo
primary 35j70
secondary 35b65
46e35
42b35
42b37
Analysis
QA299.6-433
Zhang Junqiang
Yang Dachun
Yang Sibei
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
description Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W1, p (·)(Ω, w)-regularity of the weak solutions of second order degenerate elliptic equations in divergence form with Dirichlet boundary condition, under the assumption that the degenerate coefficients belong to weighted BMO spaces with small norms.
format article
author Zhang Junqiang
Yang Dachun
Yang Sibei
author_facet Zhang Junqiang
Yang Dachun
Yang Sibei
author_sort Zhang Junqiang
title Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
title_short Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
title_full Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
title_fullStr Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
title_full_unstemmed Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
title_sort weighted w1, p (·)-regularity for degenerate elliptic equations in reifenberg domains
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/6a440974c9924781a21e14cd312b303d
work_keys_str_mv AT zhangjunqiang weightedw1pregularityfordegenerateellipticequationsinreifenbergdomains
AT yangdachun weightedw1pregularityfordegenerateellipticequationsinreifenbergdomains
AT yangsibei weightedw1pregularityfordegenerateellipticequationsinreifenbergdomains
_version_ 1718371843890479104