Network Inference and Maximum Entropy Estimation on Information Diagrams
Abstract Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entro...
Guardado en:
Autores principales: | Elliot A. Martin, Jaroslav Hlinka, Alexander Meinke, Filip Děchtěrenko, Jaroslav Tintěra, Isaura Oliver, Jörn Davidsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a45a029cd324b9fa75c45f640084384 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimization of a Pressing Diagram in OSB Pressing
por: Jaroslav Hrázský, et al.
Publicado: (2011) -
Maximum entropy models capture melodic styles
por: Jason Sakellariou, et al.
Publicado: (2017) -
An investigation of irreproducibility in maximum likelihood phylogenetic inference
por: Xing-Xing Shen, et al.
Publicado: (2020) -
Gradient Exceptionality in Maximum Entropy Grammar with Lexically Specific Constraints
por: Claire Moore-Cantwell, et al.
Publicado: (2016) -
Stimulus-dependent maximum entropy models of neural population codes.
por: Einat Granot-Atedgi, et al.
Publicado: (2013)