Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40–44 °C for 60–90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR therm...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a4e76181e06469a9ea1b74f8af28b08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6a4e76181e06469a9ea1b74f8af28b08 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6a4e76181e06469a9ea1b74f8af28b082021-11-25T17:01:40ZExperimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region10.3390/cancers132256172072-6694https://doaj.org/article/6a4e76181e06469a9ea1b74f8af28b082021-11-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/22/5617https://doaj.org/toc/2072-6694Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40–44 °C for 60–90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<−15 dB) and the intended low interaction between the individual antenna modules (<−32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR—hyperthermia in the H&N and is ready for in vivo investigation.Kemal SumserTomas DrizdalGennaro G. BellizziJuan A. Hernandez-TamamesGerard C. van RhoonMargarethus Marius PaulidesMDPI AGarticlehyperthermiamicrowave hyperthermiaMR thermometryMRI guided interventionsNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5617, p 5617 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hyperthermia microwave hyperthermia MR thermometry MRI guided interventions Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 |
spellingShingle |
hyperthermia microwave hyperthermia MR thermometry MRI guided interventions Neoplasms. Tumors. Oncology. Including cancer and carcinogens RC254-282 Kemal Sumser Tomas Drizdal Gennaro G. Bellizzi Juan A. Hernandez-Tamames Gerard C. van Rhoon Margarethus Marius Paulides Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
description |
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40–44 °C for 60–90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<−15 dB) and the intended low interaction between the individual antenna modules (<−32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR—hyperthermia in the H&N and is ready for in vivo investigation. |
format |
article |
author |
Kemal Sumser Tomas Drizdal Gennaro G. Bellizzi Juan A. Hernandez-Tamames Gerard C. van Rhoon Margarethus Marius Paulides |
author_facet |
Kemal Sumser Tomas Drizdal Gennaro G. Bellizzi Juan A. Hernandez-Tamames Gerard C. van Rhoon Margarethus Marius Paulides |
author_sort |
Kemal Sumser |
title |
Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
title_short |
Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
title_full |
Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
title_fullStr |
Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
title_full_unstemmed |
Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region |
title_sort |
experimental validation of the mrcollar: an mr compatible applicator for deep heating in the head and neck region |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6a4e76181e06469a9ea1b74f8af28b08 |
work_keys_str_mv |
AT kemalsumser experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion AT tomasdrizdal experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion AT gennarogbellizzi experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion AT juanahernandeztamames experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion AT gerardcvanrhoon experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion AT margarethusmariuspaulides experimentalvalidationofthemrcollaranmrcompatibleapplicatorfordeepheatingintheheadandneckregion |
_version_ |
1718412780059492352 |