LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer
The aim of this study is to identify potential biomarkers for early diagnosis of gynecologic cancer in order to improve survival. Cervical cancer (CC) and endometrial cancer (EC) are the most common malignant tumors of gynecologic cancer among women in the world. As the underlying molecular mechanis...
Guardado en:
Autores principales: | Shao-Hua Yu, Jia-Hua Cai, De-Lun Chen, Szu-Han Liao, Yi-Zhen Lin, Yu-Ting Chung, Jeffrey J. P. Tsai, Charles C. N. Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a69dd96293d49c99567d9a6e781230f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comprehensive Analysis and Identification of Prognostic Biomarkers and Therapeutic Targets Among FAM83 Family Members for Gastric Cancer
por: Tianhao Zhang, et al.
Publicado: (2021) -
Prognostic Matrisomal Gene Panel and Its Association with Immune Cell Infiltration in Head and Neck Carcinomas
por: Yuri Belotti, et al.
Publicado: (2021) -
Exploring Pathway-Based Group Lasso for Cancer Survival Analysis: A Special Case of Multi-Task Learning
por: Gabriela Malenová, et al.
Publicado: (2021) -
SOX9: Advances in Gynecological Malignancies
por: Huan Chen, et al.
Publicado: (2021) -
Bioinformatics Analysis of Hub Genes and Potential Therapeutic Agents Associated with Gastric Cancer
por: Zhang S, et al.
Publicado: (2021)