Evaluation and comparison of multi-omics data integration methods for cancer subtyping.
Computational integrative analysis has become a significant approach in the data-driven exploration of biological problems. Many integration methods for cancer subtyping have been proposed, but evaluating these methods has become a complicated problem due to the lack of gold standards. Moreover, que...
Enregistré dans:
Auteurs principaux: | Ran Duan, Lin Gao, Yong Gao, Yuxuan Hu, Han Xu, Mingfeng Huang, Kuo Song, Hongda Wang, Yongqiang Dong, Chaoqun Jiang, Chenxing Zhang, Songwei Jia |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6a6bcaa0ec3c4c73a360fc6dbd6f0d0f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease.
par: Lucas A Gillenwater, et autres
Publié: (2021) -
Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes
par: Brian D. Lehmann, et autres
Publié: (2021) -
Multi-omics profiling of primary small cell carcinoma of the esophagus reveals RB1 disruption and additional molecular subtypes
par: Renda Li, et autres
Publié: (2021) -
Integrative multi-omic analysis identifies new drivers and pathways in molecularly distinct subtypes of ALS
par: Giovanna Morello, et autres
Publié: (2019) -
An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer
par: Sia Viborg Lindskrog, et autres
Publié: (2021)