Detecting Bacteria on Wounds with Hyperspectral Imaging in Fluorescence Mode
Chronic non-healing wounds represent an increasing problem. In order to enable physicians and nurses to make evidence based decisions on wound treatment, the professional societies call for supporting tools to be offered to physicians. Oxygen supply, bacteria colonization and other parameters influe...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a77e096814c41e7817653139df897d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Chronic non-healing wounds represent an increasing problem. In order to enable physicians and nurses to make evidence based decisions on wound treatment, the professional societies call for supporting tools to be offered to physicians. Oxygen supply, bacteria colonization and other parameters influence the healing process. So far, these parameters cannot be monitored in an objective and routinely manner. Existing methods like the microbiological analysis of wound swabs, mean a great deal of effort and partly a long delay. In this paper 42 fluorescence images from 42 patients with diabetic foot ulcer, recorded with a hyperspectral imaging system (TIVITA®), converted for fluorescence imaging, were analysed. Beside the fluorescence images, information about the bacterial colonization is available from microbiological analysis of wound swabs. After preprocessing, principal component analysis, PCA, is used for data analysis with a 405 nm excitation wavelength, the emission wavelength range 510 - 745 nm is used for analysis. After dividing the data into a training and a test dataset it could be shown, that bacteria are detectable in the wound area. A quantification in bacterial colonization counts (BCC) was not in the focus of the research in this study stage. |
---|