Selection of higher order regression models in the analysis of multi-factorial transcription data.
<h4>Introduction</h4>Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding....
Guardado en:
Autores principales: | Olivia Prazeres da Costa, Arthur Hoffman, Johannes W Rey, Ulrich Mansmann, Thorsten Buch, Achim Tresch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a8a645ed2eb47bbbc37454bfa88e351 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Higher-Order Conditioning With Simultaneous and Backward Conditioned Stimulus: Implications for Models of Pavlovian Conditioning
por: Arthur Prével, et al.
Publicado: (2021) -
Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates
por: Svetlana N. Khonina, et al.
Publicado: (2018) -
Higher-order persons: an ontological challenge?
por: Emanuele Caminada
Publicado: (2016) -
Higher-Order Conditioning in the Spatial Domain
por: Youcef Bouchekioua, et al.
Publicado: (2021) -
Loss of PRC1 induces higher-order opening of Hox loci independently of transcription during Drosophila embryogenesis
por: Thierry Cheutin, et al.
Publicado: (2018)