Age-dependent motor dysfunction due to neuron-specific disruption of stress-activated protein kinase MKK7

Abstract c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family and controls various physiological processes including apoptosis. A specific upstream activator of JNKs is the mitogen-activated protein kinase kinase 7 (MKK7). It has been reported that MKK7-JNK signal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tokiwa Yamasaki, Norie Deki-Arima, Asahito Kaneko, Norio Miyamura, Mamiko Iwatsuki, Masato Matsuoka, Noriko Fujimori-Tonou, Yoshimi Okamoto-Uchida, Jun Hirayama, Jamey D. Marth, Yuji Yamanashi, Hiroshi Kawasaki, Koji Yamanaka, Josef M. Penninger, Shigenobu Shibata, Hiroshi Nishina
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6a9368fbd39346199e31cb7fdeeb9f70
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family and controls various physiological processes including apoptosis. A specific upstream activator of JNKs is the mitogen-activated protein kinase kinase 7 (MKK7). It has been reported that MKK7-JNK signaling plays an important regulatory role in neural development, however, post-developmental functions in the nervous system have not been elucidated. In this study, we generated neuron-specific Mkk7 knockout mice (MKK7 cKO), which impaired constitutive activation of JNK in the nervous system. MKK7 cKO mice displayed impaired circadian behavioral rhythms and decreased locomotor activity. MKK7 cKO mice at 8 months showed motor dysfunctions such as weakness of hind-limb and gait abnormality in an age-dependent manner. Axonal degeneration in the spinal cord and muscle atrophy were also observed, along with accumulation of the axonal transport proteins JNK-interacting protein 1 and amyloid beta precursor protein in the brains and spinal cords of MKK7 cKO mice. Thus, the MKK7-JNK signaling pathway plays important roles in regulating circadian rhythms and neuronal maintenance in the adult nervous system.