Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
Miguel Angel Zapata,1 Dídac Royo-Fibla,1 Octavi Font,1 José Ignacio Vela,2,3 Ivanna Marcantonio,2,3 Eduardo Ulises Moya-Sánchez,4,5 Abraham Sánchez-Pérez,5 Darío Garcia-Gasulla,4 Ulises Cortés,4,6 Eduard Ayguadé,...
Guardado en:
Autores principales: | Zapata MA, Royo-Fibla D, Font O, Vela JI, Marcantonio I, Moya-Sánchez EU, Sánchez-Pérez A, Garcia-Gasulla D, Cortés U, Ayguadé E, Labarta J |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6a95ffbc13704f83b8965f1e0ae07db4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of peripheral fundus autofluorescence in eyes with wet age-related macular degeneration
por: Suetsugu T, et al.
Publicado: (2016) -
Deep Learning for Detecting Subretinal Fluid and Discerning Macular Status by Fundus Images in Central Serous Chorioretinopathy
por: Fabao Xu, et al.
Publicado: (2021) -
Optimized Prediction Models from Fundus Imaging and Genetics for Late Age-Related Macular Degeneration
por: Arun Govindaiah, et al.
Publicado: (2021) -
Accuracy of B-scan ultrasonography in acute fundus obscuring vitreous hemorrhage using a standardized scanning protocol and a dedicated ophthalmic ultrasonographer
por: Sandinha MT, et al.
Publicado: (2017) -
Glaucoma related retinal oximetry: a technology update
por: Yap ZL, et al.
Publicado: (2018)