TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images
Abstract Atom segmentation and localization, noise reduction and deblurring of atomic-resolution scanning transmission electron microscopy (STEM) images with high precision and robustness is a challenging task. Although several conventional algorithms, such has thresholding, edge detection and clust...
Guardado en:
Autores principales: | Ruoqian Lin, Rui Zhang, Chunyang Wang, Xiao-Qing Yang, Huolin L. Xin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6aa85eb9566f44c7a8408daa170e0fd7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Deblur Net: Deep Non-Uniform Deblurring With Event Camera
por: Limeng Zhang, et al.
Publicado: (2020) -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
por: Efklidis Katsaros, et al.
Publicado: (2021) -
Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet
por: João Batista Pacheco Junior, et al.
Publicado: (2021) -
Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells
por: Juanzhu Yan, et al.
Publicado: (2018) -
Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons
por: Junichi Yamaguchi, et al.
Publicado: (2020)