Deep-learned time-signal intensity pattern analysis using an autoencoder captures magnetic resonance perfusion heterogeneity for brain tumor differentiation
Abstract Current image processing methods for dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) do not capture complex dynamic information of time-signal intensity curves. We investigated whether an autoencoder-based pattern analysis of DSC MRI captured representative temporal f...
Enregistré dans:
Auteurs principaux: | Ji Eun Park, Ho Sung Kim, Junkyu Lee, E.-Nae Cheong, Ilah Shin, Sung Soo Ahn, Woo Hyun Shim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6aac4ed3f8ab4abebaa6c94e37576693 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correlation between amide proton transfer-related signal intensity and diffusion and perfusion magnetic resonance imaging parameters in high-grade glioma
par: Masanori Nakajo, et autres
Publié: (2021) -
A DEEP AUTOENCODER-BASED REPRESENTATION FOR ARABIC TEXT CATEGORIZATION
par: Fatima-Zahra El-Alami, et autres
Publié: (2020) -
Microchannel network hydrogel induced ischemic blood perfusion connection
par: Jung Bok Lee, et autres
Publié: (2020) -
Searching for pneumothorax in x-ray images using autoencoded deep features
par: Antonio Sze-To, et autres
Publié: (2021) -
Explore Protein Conformational Space With Variational Autoencoder
par: Hao Tian, et autres
Publié: (2021)