BCDnet: Parallel heterogeneous eight-class classification model of breast pathology.
Breast cancer is the cancer with the highest incidence of malignant tumors in women, which seriously endangers women's health. With the help of computer vision technology, it has important application value to automatically classify pathological tissue images to assist doctors in rapid and accu...
Enregistré dans:
Auteurs principaux: | Qingfang He, Guang Cheng, Huimin Ju |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6ab58e1675e94124a68d2e84d2c4600e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A nomogram based on clinicopathological features and serological indicators predicting breast pathologic complete response of neoadjuvant chemotherapy in breast cancer
par: Yijun Li, et autres
Publié: (2021) -
Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.
par: Montserrat Garcia-Closas, et autres
Publié: (2008) -
Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN).
par: Maleika Heenaye-Mamode Khan, et autres
Publié: (2021) -
Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer.
par: Michael Soussan, et autres
Publié: (2014) -
A multicenter study of interobserver variability in pathologic diagnosis of papillary breast lesions on core needle biopsy with WHO classification
par: Hye Ju Kang, et autres
Publié: (2021)