Quantization of geometric phase with integer and fractional topological characterization in a quantum Ising chain with long-range interaction
Abstract An attempt is made to study and understand the behavior of quantization of geometric phase of a quantum Ising chain with long range interaction. We show the existence of integer and fractional topological characterization for this model Hamiltonian with different quantization condition and...
Guardado en:
Autor principal: | Sujit Sarkar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6abec8037c30414cb07c08cf75d4619e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Topological Quantum Phase Transition and Local Topological Order in a Strongly Interacting Light-Matter System
por: Sujit Sarkar
Publicado: (2017) -
Spectrum-Wide Quantum Criticality at the Surface of Class AIII Topological Phases: An “Energy Stack” of Integer Quantum Hall Plateau Transitions
por: Björn Sbierski, et al.
Publicado: (2020) -
Quantum algorithms for topological and geometric analysis of data
por: Seth Lloyd, et al.
Publicado: (2016) -
Multi-critical topological transition at quantum criticality
por: Ranjith R. Kumar, et al.
Publicado: (2021) -
Integer-Only CNNs with 4 Bit Weights and Bit-Shift Quantization Scales at Full-Precision Accuracy
por: Maarten Vandersteegen, et al.
Publicado: (2021)