An Optimized Deep Neural Network Detecting Small and Narrow Rectangular Objects in Google Earth Images
Object detection is an important task for rapidly localizing target objects using high-resolution satellite imagery (HRSI). Although deep learning has been shown an efficient means of detection, object detection in HRSI remains problematic due to variations in object scale and size. In this article,...
Guardado en:
Autores principales: | Shenlu Jiang, Wei Yao, Man Sing Wong, Gen Li, Zhonghua Hong, Tae-Yong Kuc, Xiaohua Tong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6acb49be294645a5a5d109f430897a10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
por: Jinzheng Peng, et al.
Publicado: (2021) -
Unsupervised Cluster Guided Object Detection in Aerial Images
por: Jiajia Liao, et al.
Publicado: (2021) -
An Assessment of Water Color for Inland Water in China Using a Landsat 8-Derived Forel–Ule Index and the Google Earth Engine Platform
por: Xidong Chen, et al.
Publicado: (2021) -
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021)