Automated acquisition of explainable knowledge from unannotated histopathology images

Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yoichiro Yamamoto, Toyonori Tsuzuki, Jun Akatsuka, Masao Ueki, Hiromu Morikawa, Yasushi Numata, Taishi Takahara, Takuji Tsuyuki, Kotaro Tsutsumi, Ryuto Nakazawa, Akira Shimizu, Ichiro Maeda, Shinichi Tsuchiya, Hiroyuki Kanno, Yukihiro Kondo, Manabu Fukumoto, Gen Tamiya, Naonori Ueda, Go Kimura
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6ae4bd550e6b481f950398b8c01f372f
record_format dspace
spelling oai:doaj.org-article:6ae4bd550e6b481f950398b8c01f372f2021-12-02T15:35:32ZAutomated acquisition of explainable knowledge from unannotated histopathology images10.1038/s41467-019-13647-82041-1723https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f2019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13647-8https://doaj.org/toc/2041-1723Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of prostate cancer recurrence.Yoichiro YamamotoToyonori TsuzukiJun AkatsukaMasao UekiHiromu MorikawaYasushi NumataTaishi TakaharaTakuji TsuyukiKotaro TsutsumiRyuto NakazawaAkira ShimizuIchiro MaedaShinichi TsuchiyaHiroyuki KannoYukihiro KondoManabu FukumotoGen TamiyaNaonori UedaGo KimuraNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yoichiro Yamamoto
Toyonori Tsuzuki
Jun Akatsuka
Masao Ueki
Hiromu Morikawa
Yasushi Numata
Taishi Takahara
Takuji Tsuyuki
Kotaro Tsutsumi
Ryuto Nakazawa
Akira Shimizu
Ichiro Maeda
Shinichi Tsuchiya
Hiroyuki Kanno
Yukihiro Kondo
Manabu Fukumoto
Gen Tamiya
Naonori Ueda
Go Kimura
Automated acquisition of explainable knowledge from unannotated histopathology images
description Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of prostate cancer recurrence.
format article
author Yoichiro Yamamoto
Toyonori Tsuzuki
Jun Akatsuka
Masao Ueki
Hiromu Morikawa
Yasushi Numata
Taishi Takahara
Takuji Tsuyuki
Kotaro Tsutsumi
Ryuto Nakazawa
Akira Shimizu
Ichiro Maeda
Shinichi Tsuchiya
Hiroyuki Kanno
Yukihiro Kondo
Manabu Fukumoto
Gen Tamiya
Naonori Ueda
Go Kimura
author_facet Yoichiro Yamamoto
Toyonori Tsuzuki
Jun Akatsuka
Masao Ueki
Hiromu Morikawa
Yasushi Numata
Taishi Takahara
Takuji Tsuyuki
Kotaro Tsutsumi
Ryuto Nakazawa
Akira Shimizu
Ichiro Maeda
Shinichi Tsuchiya
Hiroyuki Kanno
Yukihiro Kondo
Manabu Fukumoto
Gen Tamiya
Naonori Ueda
Go Kimura
author_sort Yoichiro Yamamoto
title Automated acquisition of explainable knowledge from unannotated histopathology images
title_short Automated acquisition of explainable knowledge from unannotated histopathology images
title_full Automated acquisition of explainable knowledge from unannotated histopathology images
title_fullStr Automated acquisition of explainable knowledge from unannotated histopathology images
title_full_unstemmed Automated acquisition of explainable knowledge from unannotated histopathology images
title_sort automated acquisition of explainable knowledge from unannotated histopathology images
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f
work_keys_str_mv AT yoichiroyamamoto automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT toyonoritsuzuki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT junakatsuka automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT masaoueki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT hiromumorikawa automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT yasushinumata automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT taishitakahara automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT takujitsuyuki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT kotarotsutsumi automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT ryutonakazawa automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT akirashimizu automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT ichiromaeda automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT shinichitsuchiya automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT hiroyukikanno automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT yukihirokondo automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT manabufukumoto automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT gentamiya automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT naonoriueda automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
AT gokimura automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages
_version_ 1718386537942482944