Automated acquisition of explainable knowledge from unannotated histopathology images
Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of p...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6ae4bd550e6b481f950398b8c01f372f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6ae4bd550e6b481f950398b8c01f372f2021-12-02T15:35:32ZAutomated acquisition of explainable knowledge from unannotated histopathology images10.1038/s41467-019-13647-82041-1723https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f2019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13647-8https://doaj.org/toc/2041-1723Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of prostate cancer recurrence.Yoichiro YamamotoToyonori TsuzukiJun AkatsukaMasao UekiHiromu MorikawaYasushi NumataTaishi TakaharaTakuji TsuyukiKotaro TsutsumiRyuto NakazawaAkira ShimizuIchiro MaedaShinichi TsuchiyaHiroyuki KannoYukihiro KondoManabu FukumotoGen TamiyaNaonori UedaGo KimuraNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yoichiro Yamamoto Toyonori Tsuzuki Jun Akatsuka Masao Ueki Hiromu Morikawa Yasushi Numata Taishi Takahara Takuji Tsuyuki Kotaro Tsutsumi Ryuto Nakazawa Akira Shimizu Ichiro Maeda Shinichi Tsuchiya Hiroyuki Kanno Yukihiro Kondo Manabu Fukumoto Gen Tamiya Naonori Ueda Go Kimura Automated acquisition of explainable knowledge from unannotated histopathology images |
description |
Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of prostate cancer recurrence. |
format |
article |
author |
Yoichiro Yamamoto Toyonori Tsuzuki Jun Akatsuka Masao Ueki Hiromu Morikawa Yasushi Numata Taishi Takahara Takuji Tsuyuki Kotaro Tsutsumi Ryuto Nakazawa Akira Shimizu Ichiro Maeda Shinichi Tsuchiya Hiroyuki Kanno Yukihiro Kondo Manabu Fukumoto Gen Tamiya Naonori Ueda Go Kimura |
author_facet |
Yoichiro Yamamoto Toyonori Tsuzuki Jun Akatsuka Masao Ueki Hiromu Morikawa Yasushi Numata Taishi Takahara Takuji Tsuyuki Kotaro Tsutsumi Ryuto Nakazawa Akira Shimizu Ichiro Maeda Shinichi Tsuchiya Hiroyuki Kanno Yukihiro Kondo Manabu Fukumoto Gen Tamiya Naonori Ueda Go Kimura |
author_sort |
Yoichiro Yamamoto |
title |
Automated acquisition of explainable knowledge from unannotated histopathology images |
title_short |
Automated acquisition of explainable knowledge from unannotated histopathology images |
title_full |
Automated acquisition of explainable knowledge from unannotated histopathology images |
title_fullStr |
Automated acquisition of explainable knowledge from unannotated histopathology images |
title_full_unstemmed |
Automated acquisition of explainable knowledge from unannotated histopathology images |
title_sort |
automated acquisition of explainable knowledge from unannotated histopathology images |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f |
work_keys_str_mv |
AT yoichiroyamamoto automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT toyonoritsuzuki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT junakatsuka automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT masaoueki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT hiromumorikawa automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT yasushinumata automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT taishitakahara automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT takujitsuyuki automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT kotarotsutsumi automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT ryutonakazawa automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT akirashimizu automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT ichiromaeda automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT shinichitsuchiya automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT hiroyukikanno automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT yukihirokondo automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT manabufukumoto automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT gentamiya automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT naonoriueda automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages AT gokimura automatedacquisitionofexplainableknowledgefromunannotatedhistopathologyimages |
_version_ |
1718386537942482944 |