Automated acquisition of explainable knowledge from unannotated histopathology images
Technologies for acquiring explainable features from medical images need further development. Here, the authors report a deep learning based automated acquisition of explainable features from pathology images, and show a higher accuracy of their method as compared to pathologist based diagnosis of p...
Guardado en:
Autores principales: | Yoichiro Yamamoto, Toyonori Tsuzuki, Jun Akatsuka, Masao Ueki, Hiromu Morikawa, Yasushi Numata, Taishi Takahara, Takuji Tsuyuki, Kotaro Tsutsumi, Ryuto Nakazawa, Akira Shimizu, Ichiro Maeda, Shinichi Tsuchiya, Hiroyuki Kanno, Yukihiro Kondo, Manabu Fukumoto, Gen Tamiya, Naonori Ueda, Go Kimura |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ae4bd550e6b481f950398b8c01f372f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates
por: Christopher E. Ellison, et al.
Publicado: (2014) -
Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
por: Nam Nhut Phan, et al.
Publicado: (2021) -
Differential dynamics of cortical neuron dendritic trees revealed by long-term in vivo imaging in neonates
por: Shingo Nakazawa, et al.
Publicado: (2018) -
Risk factor analysis of intravesical recurrence after retroperitoneoscopic nephroureterectomy for upper tract urothelial carcinoma
por: Masato Yanagi, et al.
Publicado: (2021) -
A case of Alagille syndrome complicated by intraocular lens subluxation and rhegmatogenous retinal detachment
por: Fukumoto M, et al.
Publicado: (2013)