Changes in gray matter induced by learning--revisited.
<h4>Background</h4>Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly selective increase in brain gray mat...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ae4e27f2a2e4380a6939a58106e1ef7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6ae4e27f2a2e4380a6939a58106e1ef7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6ae4e27f2a2e4380a6939a58106e1ef72021-11-25T06:11:31ZChanges in gray matter induced by learning--revisited.1932-620310.1371/journal.pone.0002669https://doaj.org/article/6ae4e27f2a2e4380a6939a58106e1ef72008-07-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18648501/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly selective increase in brain gray matter in the occipito-temporal cortex comprising the motion sensitive area hMT/V5 bilaterally. However, the exact time-scale of usage-dependant structural changes occur is still unknown. A better understanding of the temporal parameters may help to elucidate to what extent this type of cortical plasticity contributes to fast adapting cortical processes that may be relevant to learning.<h4>Principal findings</h4>Using a 3 Tesla scanner and monitoring whole brain structure we repeated and extended our original study in 20 healthy adult volunteers, focussing on the temporal aspects of the structural changes and investigated whether these changes are performance or exercise dependant. The data confirmed our earlier observation using a mean effects analysis and in addition showed that learning to juggle can alter gray matter in the occipito-temporal cortex as early as after 7 days of training. Neither performance nor exercise alone could explain these changes.<h4>Conclusion</h4>We suggest that the qualitative change (i.e. learning of a new task) is more critical for the brain to change its structure than continued training of an already-learned task.Joenna DriemeyerJanina BoykeChristian GaserChristian BüchelArne MayPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 3, Iss 7, p e2669 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Joenna Driemeyer Janina Boyke Christian Gaser Christian Büchel Arne May Changes in gray matter induced by learning--revisited. |
description |
<h4>Background</h4>Recently, activation-dependant structural brain plasticity in humans has been demonstrated in adults after three months of training a visio-motor skill. Learning three-ball cascade juggling was associated with a transient and highly selective increase in brain gray matter in the occipito-temporal cortex comprising the motion sensitive area hMT/V5 bilaterally. However, the exact time-scale of usage-dependant structural changes occur is still unknown. A better understanding of the temporal parameters may help to elucidate to what extent this type of cortical plasticity contributes to fast adapting cortical processes that may be relevant to learning.<h4>Principal findings</h4>Using a 3 Tesla scanner and monitoring whole brain structure we repeated and extended our original study in 20 healthy adult volunteers, focussing on the temporal aspects of the structural changes and investigated whether these changes are performance or exercise dependant. The data confirmed our earlier observation using a mean effects analysis and in addition showed that learning to juggle can alter gray matter in the occipito-temporal cortex as early as after 7 days of training. Neither performance nor exercise alone could explain these changes.<h4>Conclusion</h4>We suggest that the qualitative change (i.e. learning of a new task) is more critical for the brain to change its structure than continued training of an already-learned task. |
format |
article |
author |
Joenna Driemeyer Janina Boyke Christian Gaser Christian Büchel Arne May |
author_facet |
Joenna Driemeyer Janina Boyke Christian Gaser Christian Büchel Arne May |
author_sort |
Joenna Driemeyer |
title |
Changes in gray matter induced by learning--revisited. |
title_short |
Changes in gray matter induced by learning--revisited. |
title_full |
Changes in gray matter induced by learning--revisited. |
title_fullStr |
Changes in gray matter induced by learning--revisited. |
title_full_unstemmed |
Changes in gray matter induced by learning--revisited. |
title_sort |
changes in gray matter induced by learning--revisited. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2008 |
url |
https://doaj.org/article/6ae4e27f2a2e4380a6939a58106e1ef7 |
work_keys_str_mv |
AT joennadriemeyer changesingraymatterinducedbylearningrevisited AT janinaboyke changesingraymatterinducedbylearningrevisited AT christiangaser changesingraymatterinducedbylearningrevisited AT christianbuchel changesingraymatterinducedbylearningrevisited AT arnemay changesingraymatterinducedbylearningrevisited |
_version_ |
1718414046179360768 |