Inferring time derivatives including cell growth rates using Gaussian processes
High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating err...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f660 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating errors in this inference and in any summary statistics. |
---|