Inferring time derivatives including cell growth rates using Gaussian processes

High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating err...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter S. Swain, Keiran Stevenson, Allen Leary, Luis F. Montano-Gutierrez, Ivan B.N. Clark, Jackie Vogel, Teuta Pilizota
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f660
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating errors in this inference and in any summary statistics.