Inferring time derivatives including cell growth rates using Gaussian processes

High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating err...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Peter S. Swain, Keiran Stevenson, Allen Leary, Luis F. Montano-Gutierrez, Ivan B.N. Clark, Jackie Vogel, Teuta Pilizota
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f660
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6aefe21cd35443ab9d0e44b3d219f660
record_format dspace
spelling oai:doaj.org-article:6aefe21cd35443ab9d0e44b3d219f6602021-12-02T15:35:45ZInferring time derivatives including cell growth rates using Gaussian processes10.1038/ncomms137662041-1723https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f6602016-12-01T00:00:00Zhttps://doi.org/10.1038/ncomms13766https://doaj.org/toc/2041-1723High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating errors in this inference and in any summary statistics.Peter S. SwainKeiran StevensonAllen LearyLuis F. Montano-GutierrezIvan B.N. ClarkJackie VogelTeuta PilizotaNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-8 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Peter S. Swain
Keiran Stevenson
Allen Leary
Luis F. Montano-Gutierrez
Ivan B.N. Clark
Jackie Vogel
Teuta Pilizota
Inferring time derivatives including cell growth rates using Gaussian processes
description High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating errors in this inference and in any summary statistics.
format article
author Peter S. Swain
Keiran Stevenson
Allen Leary
Luis F. Montano-Gutierrez
Ivan B.N. Clark
Jackie Vogel
Teuta Pilizota
author_facet Peter S. Swain
Keiran Stevenson
Allen Leary
Luis F. Montano-Gutierrez
Ivan B.N. Clark
Jackie Vogel
Teuta Pilizota
author_sort Peter S. Swain
title Inferring time derivatives including cell growth rates using Gaussian processes
title_short Inferring time derivatives including cell growth rates using Gaussian processes
title_full Inferring time derivatives including cell growth rates using Gaussian processes
title_fullStr Inferring time derivatives including cell growth rates using Gaussian processes
title_full_unstemmed Inferring time derivatives including cell growth rates using Gaussian processes
title_sort inferring time derivatives including cell growth rates using gaussian processes
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f660
work_keys_str_mv AT petersswain inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT keiranstevenson inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT allenleary inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT luisfmontanogutierrez inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT ivanbnclark inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT jackievogel inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
AT teutapilizota inferringtimederivativesincludingcellgrowthratesusinggaussianprocesses
_version_ 1718386478834253824