Inferring time derivatives including cell growth rates using Gaussian processes
High-throughput time-series data is increasingly available, yet estimating time-derivatives from such data can remain a challenge. Here, the authors provide a non-parametric method for inferring the first and second time-derivatives from multiple replicates of time-series data and for estimating err...
Guardado en:
Autores principales: | Peter S. Swain, Keiran Stevenson, Allen Leary, Luis F. Montano-Gutierrez, Ivan B.N. Clark, Jackie Vogel, Teuta Pilizota |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6aefe21cd35443ab9d0e44b3d219f660 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Active Efflux Leads to Heterogeneous Dissipation of Proton Motive Force by Protonophores in Bacteria
por: Dai Le, et al.
Publicado: (2021) -
Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates.
por: Angelica Feurdean, et al.
Publicado: (2013) -
On Gaussian curvature and membrane fission
por: Mara Denisse Rueda-Contreras, et al.
Publicado: (2021) -
Laguerre-Gaussian mode sorter
por: Nicolas K. Fontaine, et al.
Publicado: (2019) -
Dynamics-dependent density distribution in active suspensions
por: Jochen Arlt, et al.
Publicado: (2019)