Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with hig...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6af43c9452dd46b08f58fdb0b8735838 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6af43c9452dd46b08f58fdb0b8735838 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6af43c9452dd46b08f58fdb0b87358382021-12-02T12:32:08ZMultimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging10.1038/s41598-017-05484-w2045-2322https://doaj.org/article/6af43c9452dd46b08f58fdb0b87358382017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05484-whttps://doaj.org/toc/2045-2322Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.N. J. ShahJ. ArrublaR. RajkumarE. FarrherJ. MaulerE. Rota KopsL. TellmannJ. ScheinsF. BoersJ. DammersP. SripadC. LercheK. J. LangenH. HerzogI. NeunerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q N. J. Shah J. Arrubla R. Rajkumar E. Farrher J. Mauler E. Rota Kops L. Tellmann J. Scheins F. Boers J. Dammers P. Sripad C. Lerche K. J. Langen H. Herzog I. Neuner Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
description |
Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases. |
format |
article |
author |
N. J. Shah J. Arrubla R. Rajkumar E. Farrher J. Mauler E. Rota Kops L. Tellmann J. Scheins F. Boers J. Dammers P. Sripad C. Lerche K. J. Langen H. Herzog I. Neuner |
author_facet |
N. J. Shah J. Arrubla R. Rajkumar E. Farrher J. Mauler E. Rota Kops L. Tellmann J. Scheins F. Boers J. Dammers P. Sripad C. Lerche K. J. Langen H. Herzog I. Neuner |
author_sort |
N. J. Shah |
title |
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
title_short |
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
title_full |
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
title_fullStr |
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
title_full_unstemmed |
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging |
title_sort |
multimodal fingerprints of resting state networks as assessed by simultaneous trimodal mr-pet-eeg imaging |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/6af43c9452dd46b08f58fdb0b8735838 |
work_keys_str_mv |
AT njshah multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT jarrubla multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT rrajkumar multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT efarrher multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT jmauler multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT erotakops multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT ltellmann multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT jscheins multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT fboers multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT jdammers multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT psripad multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT clerche multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT kjlangen multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT hherzog multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging AT ineuner multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging |
_version_ |
1718394162605195264 |