Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging

Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with hig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: N. J. Shah, J. Arrubla, R. Rajkumar, E. Farrher, J. Mauler, E. Rota Kops, L. Tellmann, J. Scheins, F. Boers, J. Dammers, P. Sripad, C. Lerche, K. J. Langen, H. Herzog, I. Neuner
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6af43c9452dd46b08f58fdb0b8735838
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6af43c9452dd46b08f58fdb0b8735838
record_format dspace
spelling oai:doaj.org-article:6af43c9452dd46b08f58fdb0b87358382021-12-02T12:32:08ZMultimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging10.1038/s41598-017-05484-w2045-2322https://doaj.org/article/6af43c9452dd46b08f58fdb0b87358382017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05484-whttps://doaj.org/toc/2045-2322Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.N. J. ShahJ. ArrublaR. RajkumarE. FarrherJ. MaulerE. Rota KopsL. TellmannJ. ScheinsF. BoersJ. DammersP. SripadC. LercheK. J. LangenH. HerzogI. NeunerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
N. J. Shah
J. Arrubla
R. Rajkumar
E. Farrher
J. Mauler
E. Rota Kops
L. Tellmann
J. Scheins
F. Boers
J. Dammers
P. Sripad
C. Lerche
K. J. Langen
H. Herzog
I. Neuner
Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
description Abstract Simultaneous MR-PET-EEG (magnetic resonance imaging - positron emission tomography – electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here for the first time. It enables the assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. Here, we characterize the brain’s default mode network (DMN) in healthy male subjects using multimodal fingerprinting by quantifying energy metabolism via 2- [18F]fluoro-2-desoxy-D-glucose PET (FDG-PET), the inhibition – excitation balance of neuronal activation via magnetic resonance spectroscopy (MRS), its functional connectivity via fMRI and its electrophysiological signature via EEG. The trimodal approach reveals a complementary fingerprint. Neuronal activation within the DMN as assessed with fMRI is positively correlated with the mean standard uptake value of FDG. Electrical source localization of EEG signals shows a significant difference between the dorsal DMN and sensorimotor network in the frequency range of δ, θ, α and β–1, but not with β–2 and β–3. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases.
format article
author N. J. Shah
J. Arrubla
R. Rajkumar
E. Farrher
J. Mauler
E. Rota Kops
L. Tellmann
J. Scheins
F. Boers
J. Dammers
P. Sripad
C. Lerche
K. J. Langen
H. Herzog
I. Neuner
author_facet N. J. Shah
J. Arrubla
R. Rajkumar
E. Farrher
J. Mauler
E. Rota Kops
L. Tellmann
J. Scheins
F. Boers
J. Dammers
P. Sripad
C. Lerche
K. J. Langen
H. Herzog
I. Neuner
author_sort N. J. Shah
title Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
title_short Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
title_full Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
title_fullStr Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
title_full_unstemmed Multimodal Fingerprints of Resting State Networks as assessed by Simultaneous Trimodal MR-PET-EEG Imaging
title_sort multimodal fingerprints of resting state networks as assessed by simultaneous trimodal mr-pet-eeg imaging
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/6af43c9452dd46b08f58fdb0b8735838
work_keys_str_mv AT njshah multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT jarrubla multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT rrajkumar multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT efarrher multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT jmauler multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT erotakops multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT ltellmann multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT jscheins multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT fboers multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT jdammers multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT psripad multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT clerche multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT kjlangen multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT hherzog multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
AT ineuner multimodalfingerprintsofrestingstatenetworksasassessedbysimultaneoustrimodalmrpeteegimaging
_version_ 1718394162605195264