Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction
This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.5 g VSS/L and 1...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6b0c741372e444588d5fc90357ac58ed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6b0c741372e444588d5fc90357ac58ed |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6b0c741372e444588d5fc90357ac58ed2021-11-06T11:07:31ZEffect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction0273-12231996-973210.2166/wst.2021.163https://doaj.org/article/6b0c741372e444588d5fc90357ac58ed2021-06-01T00:00:00Zhttp://wst.iwaponline.com/content/83/11/2669https://doaj.org/toc/0273-1223https://doaj.org/toc/1996-9732This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.5 g VSS/L and 150 mL of basal medium (0.67 g COD/g SO42− at a 7–8 pH) were used to determine the percentage of electron equivalents, maximum specific methanogenic (SMA), and sulfide generation activities (SGA). The copper effect was evaluated in a previously activated sludge in batch bioassays containing different concentrations of copper (0–50 mg/L), 3 gVSS/L, and 150 mL of basal medium (0.67 g COD/g SO42−). Carbon source bioassays with glucose obtained the best results in terms of the SGA (1.73 ± 0.34 mg S2−/g VSS•d) and SMA (10.41 mg COD-CH4/g VSS•d). The electron flow in the presence of glucose also indicated that 21.29 ± 5.2% of the metabolic activity of the sludge was directed towards sulfidogenesis. Copper toxicity bioassays indicated that a considerable decline in metabolic activity occurs above 10 mg/L. The 20%IC, 50%IC, and 80%IC were 4.5, 14.94, and 35.31 mg Cu/L. Compared to the other carbon sources tested, glucose proved to be a suitable electron donor since it favors sulfidogenesis. Finally, copper concentrations above 15 mg/L inhibited metabolic activity in the toxicity bioassays. HIGHLIGHTS The influence of organic matter degradation and copper toxicity was assessed.; Potential application of sulfate reducing bacteria (SRB) for acid mine drainage treatment was evaluated.; The highest sulfidogenic activity was observed with glucose as carbon source.; High copper concentration impacts sulfate removal and sulfide production.;C. D. LoretoO. MongeA. R. MartinV. Ochoa-HerreraR. Sierra-AlvarezF. J. AlmendarizIWA Publishingarticleelectron donorsheavy metalsinhibitory concentrationmicrobial competitionpercentage of electron equivalentssulfate-reductionEnvironmental technology. Sanitary engineeringTD1-1066ENWater Science and Technology, Vol 83, Iss 11, Pp 2669-2677 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
electron donors heavy metals inhibitory concentration microbial competition percentage of electron equivalents sulfate-reduction Environmental technology. Sanitary engineering TD1-1066 |
spellingShingle |
electron donors heavy metals inhibitory concentration microbial competition percentage of electron equivalents sulfate-reduction Environmental technology. Sanitary engineering TD1-1066 C. D. Loreto O. Monge A. R. Martin V. Ochoa-Herrera R. Sierra-Alvarez F. J. Almendariz Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
description |
This study compares sulfate-reduction performance in an anaerobic sludge with different carbon sources (ethanol, acetate, and glucose). Also, the toxic effect of copper was evaluated to assess its feasibility for possible acid mine drainage (AMD) treatment. Serological bottles with 1.5 g VSS/L and 150 mL of basal medium (0.67 g COD/g SO42− at a 7–8 pH) were used to determine the percentage of electron equivalents, maximum specific methanogenic (SMA), and sulfide generation activities (SGA). The copper effect was evaluated in a previously activated sludge in batch bioassays containing different concentrations of copper (0–50 mg/L), 3 gVSS/L, and 150 mL of basal medium (0.67 g COD/g SO42−). Carbon source bioassays with glucose obtained the best results in terms of the SGA (1.73 ± 0.34 mg S2−/g VSS•d) and SMA (10.41 mg COD-CH4/g VSS•d). The electron flow in the presence of glucose also indicated that 21.29 ± 5.2% of the metabolic activity of the sludge was directed towards sulfidogenesis. Copper toxicity bioassays indicated that a considerable decline in metabolic activity occurs above 10 mg/L. The 20%IC, 50%IC, and 80%IC were 4.5, 14.94, and 35.31 mg Cu/L. Compared to the other carbon sources tested, glucose proved to be a suitable electron donor since it favors sulfidogenesis. Finally, copper concentrations above 15 mg/L inhibited metabolic activity in the toxicity bioassays. HIGHLIGHTS
The influence of organic matter degradation and copper toxicity was assessed.;
Potential application of sulfate reducing bacteria (SRB) for acid mine drainage treatment was evaluated.;
The highest sulfidogenic activity was observed with glucose as carbon source.;
High copper concentration impacts sulfate removal and sulfide production.; |
format |
article |
author |
C. D. Loreto O. Monge A. R. Martin V. Ochoa-Herrera R. Sierra-Alvarez F. J. Almendariz |
author_facet |
C. D. Loreto O. Monge A. R. Martin V. Ochoa-Herrera R. Sierra-Alvarez F. J. Almendariz |
author_sort |
C. D. Loreto |
title |
Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
title_short |
Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
title_full |
Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
title_fullStr |
Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
title_full_unstemmed |
Effect of carbon source and metal toxicity for potential acid mine drainage (AMD) treatment with an anaerobic sludge using sulfate-reduction |
title_sort |
effect of carbon source and metal toxicity for potential acid mine drainage (amd) treatment with an anaerobic sludge using sulfate-reduction |
publisher |
IWA Publishing |
publishDate |
2021 |
url |
https://doaj.org/article/6b0c741372e444588d5fc90357ac58ed |
work_keys_str_mv |
AT cdloreto effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction AT omonge effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction AT armartin effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction AT vochoaherrera effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction AT rsierraalvarez effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction AT fjalmendariz effectofcarbonsourceandmetaltoxicityforpotentialacidminedrainageamdtreatmentwithananaerobicsludgeusingsulfatereduction |
_version_ |
1718443737051299840 |