Moving from drought hazard to impact forecasts

There still lacks a forecast system that inform end-users regarding the drought impacts, which will be however important for drought management. Here the authors assess the feasibility of forecasting drought impacts using machine-learning and confirm that models, which were built with sufficient amo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samuel J. Sutanto, Melati van der Weert, Niko Wanders, Veit Blauhut, Henny A. J. Van Lanen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/6b16b2fec1f34e86ae8807af6c500899
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6b16b2fec1f34e86ae8807af6c500899
record_format dspace
spelling oai:doaj.org-article:6b16b2fec1f34e86ae8807af6c5008992021-12-02T17:02:02ZMoving from drought hazard to impact forecasts10.1038/s41467-019-12840-z2041-1723https://doaj.org/article/6b16b2fec1f34e86ae8807af6c5008992019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12840-zhttps://doaj.org/toc/2041-1723There still lacks a forecast system that inform end-users regarding the drought impacts, which will be however important for drought management. Here the authors assess the feasibility of forecasting drought impacts using machine-learning and confirm that models, which were built with sufficient amount of reported drought impacts in a certain sector, are able to forecast drought impacts a few months ahead.Samuel J. SutantoMelati van der WeertNiko WandersVeit BlauhutHenny A. J. Van LanenNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Samuel J. Sutanto
Melati van der Weert
Niko Wanders
Veit Blauhut
Henny A. J. Van Lanen
Moving from drought hazard to impact forecasts
description There still lacks a forecast system that inform end-users regarding the drought impacts, which will be however important for drought management. Here the authors assess the feasibility of forecasting drought impacts using machine-learning and confirm that models, which were built with sufficient amount of reported drought impacts in a certain sector, are able to forecast drought impacts a few months ahead.
format article
author Samuel J. Sutanto
Melati van der Weert
Niko Wanders
Veit Blauhut
Henny A. J. Van Lanen
author_facet Samuel J. Sutanto
Melati van der Weert
Niko Wanders
Veit Blauhut
Henny A. J. Van Lanen
author_sort Samuel J. Sutanto
title Moving from drought hazard to impact forecasts
title_short Moving from drought hazard to impact forecasts
title_full Moving from drought hazard to impact forecasts
title_fullStr Moving from drought hazard to impact forecasts
title_full_unstemmed Moving from drought hazard to impact forecasts
title_sort moving from drought hazard to impact forecasts
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/6b16b2fec1f34e86ae8807af6c500899
work_keys_str_mv AT samueljsutanto movingfromdroughthazardtoimpactforecasts
AT melativanderweert movingfromdroughthazardtoimpactforecasts
AT nikowanders movingfromdroughthazardtoimpactforecasts
AT veitblauhut movingfromdroughthazardtoimpactforecasts
AT hennyajvanlanen movingfromdroughthazardtoimpactforecasts
_version_ 1718381972934361088