Understanding the complexity of sepsis mortality prediction via rule discovery and analysis: a pilot study
Abstract Background Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, has become one of the major causes of death in Intensive Care Units (ICUs). The heterogeneity and complexity of this syndrome lead to the absence of golden standards for its...
Guardado en:
Autores principales: | Ying Wu, Shuai Huang, Xiangyu Chang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6b41bba15a87461e90b4916817fb6771 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bioinformatics Analysis for Identifying Pertinent Pathways and Genes in Sepsis
por: Yiran Li, et al.
Publicado: (2021) -
Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
por: Supreeth P. Shashikumar, et al.
Publicado: (2021) -
The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
por: Simon Meyer Lauritsen, et al.
Publicado: (2021) -
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
por: Christine K. Lee, et al.
Publicado: (2021)