Thermal Performance of Cryogenic Micro-Pin Fin Coolers with Two-Phase Liquid Nitrogen Flows
This study experimentally explores the thermofluidic performance of a cryogenic micro-pin fin cooler with two-phase liquid nitrogen flows. The liquid nitrogen cooling system is introduced to investigate the performance of the micro-pin cooler in a cryogenic condition. The result reveals that the nom...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
MDPI AG
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/6b49d05f324f4c3f9f8fdc083e8235c5 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study experimentally explores the thermofluidic performance of a cryogenic micro-pin fin cooler with two-phase liquid nitrogen flows. The liquid nitrogen cooling system is introduced to investigate the performance of the micro-pin cooler in a cryogenic condition. The result reveals that the nominal value of the base heat transfer coefficients of the micro-pin fin cooler with liquid nitrogen flows, 240 kW/m<sup>2</sup>-K at a mass flow rate of 2.23 g/s, is an order of magnitude greater than that with FC-72 flows. The result also demonstrates that the base heat transfer coefficient of the micro-pin fin cooler is nearly three times greater than that of the micro-gap cooler, not containing any fins. This study shows the feasibility of the cryogenic micro-pin fin cooler for thermally controlling very high heat density devices such as high-power laser diode bars, of which the heat density can reach 2000 kW/m<sup>2</sup>. |
---|