Inference of causal networks from time-varying transcriptome data via sparse coding.
Temporal analysis of genome-wide data can provide insights into the underlying mechanism of the biological processes in two ways. First, grouping the temporal data provides a richer, more robust representation of the underlying processes that are co-regulated. The net result is a significant dimensi...
Guardado en:
Autores principales: | Kai Zhang, Ju Han, Torsten Groesser, Gerald Fontenay, Bahram Parvin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6b4cf01c5c8d4d10852e8539b37e8fb9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Locating multiple diffusion sources in time varying networks from sparse observations
por: Zhao-Long Hu, et al.
Publicado: (2018) -
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
Inferring transcriptomic cell states and transitions only from time series transcriptome data
por: Kyuri Jo, et al.
Publicado: (2021) -
Multisensory Perception of Contradictory Information in an Environment of Varying Reliability: Evidence for Conscious Perception and Optimal Causal Inference
por: Mohammad-Ali Nikouei Mahani, et al.
Publicado: (2017) - Journal of causal inference