Inference of causal networks from time-varying transcriptome data via sparse coding.
Temporal analysis of genome-wide data can provide insights into the underlying mechanism of the biological processes in two ways. First, grouping the temporal data provides a richer, more robust representation of the underlying processes that are co-regulated. The net result is a significant dimensi...
Enregistré dans:
Auteurs principaux: | Kai Zhang, Ju Han, Torsten Groesser, Gerald Fontenay, Bahram Parvin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2012
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6b4cf01c5c8d4d10852e8539b37e8fb9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Locating multiple diffusion sources in time varying networks from sparse observations
par: Zhao-Long Hu, et autres
Publié: (2018) -
Gene regulatory network inference from sparsely sampled noisy data
par: Atte Aalto, et autres
Publié: (2020) -
Inferring transcriptomic cell states and transitions only from time series transcriptome data
par: Kyuri Jo, et autres
Publié: (2021) -
Multisensory Perception of Contradictory Information in an Environment of Varying Reliability: Evidence for Conscious Perception and Optimal Causal Inference
par: Mohammad-Ali Nikouei Mahani, et autres
Publié: (2017) - Journal of causal inference