A minimal fragment of MUC1 mediates growth of cancer cells.

The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a mem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sanjeev Mahanta, Shawn P Fessler, Jaehong Park, Cynthia Bamdad
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2008
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6b598745533848638598ca09c5bdce3e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a membrane-bound MUC1 cleavage product, that we call MUC1*, is the predominant form of the protein on cultured cancer cells and on cancerous tissues. Further, we demonstrate that transfection of a minimal fragment of MUC1, MUC1*(1110), containing a mere forty-five (45) amino acids of the extracellular domain, is sufficient to confer the oncogenic activities that were previously attributed to the full-length protein. By comparison of molecular weight and function, it appears that MUC1* and MUC1*(1110) are approximately equivalent. Evidence is presented that strongly supports a mechanism whereby dimerization of the extracellular domain of MUC1* activates the MAP kinase signaling cascade and stimulates cell growth. These findings suggest methods to manipulate this growth mechanism for therapeutic interventions in cancer treatments.