Classifying muscle parameters with artificial neural networks and simulated lateral pinch data.
<h4>Objective</h4>Hill-type muscle models are widely employed in simulations of human movement. Yet, the parameters underlying these models are difficult or impossible to measure in vivo. Prior studies demonstrate that Hill-type muscle parameters are encoded within dynamometric data. But...
Enregistré dans:
Auteurs principaux: | Kalyn M Kearney, Joel B Harley, Jennifer A Nichols |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6b5ee3e5a9bf444db366dcddb94e50fc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Physics-basis simulation of bubble pinch-off
par: Kei ITO, et autres
Publié: (2016) -
Branching Response of Poinsettia ‘Orange Spice’ to a Combination of Pinching, No Pinching, and Atrimmec
par: Bruce L. Dunn, et autres
Publié: (2021) -
Actualización de pinches : manual /
Publié: (2010) -
Incorporating Uncertainties in Pinch Analysis
par: Santanu Bandyopadhyay
Publié: (2021) -
Prediction of lateral surface, volume and sphericity of pomegranate using MLP artificial neural network
par: A Rohani, et autres
Publié: (2015)