Effect of single tube sections on the structural safety of Chinese solar greenhouse skeletons

Abstract In recent years, the use of single-tube skeletons for the construction of Chinese solar greenhouses has increased. As a consequence, during the selection of the construction materials, the safety of these structures has become an important issue. The single tube section has various forms, b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xingan Liu, Zhenkun Li, Lei Zhang, Yu Liu, Yiming Li, Tianlai Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6b74379dca4a4e1eb49ba6e1076353c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In recent years, the use of single-tube skeletons for the construction of Chinese solar greenhouses has increased. As a consequence, during the selection of the construction materials, the safety of these structures has become an important issue. The single tube section has various forms, but there is no scientific theory to guide the selection process. To the best of our knowledge, the scientific analysis of the impact of single pipe cross section on the safety of greenhouse skeleton has not been addressed so far. In this context, the finite element analysis software was used to calculate and analyze the stress elements, displacement of round tube, Ω tube, elliptic tube and square tube under the same load conditions. We used the Chinese Standard values as a reference and analyzed structural features of different sizes and thicknesses of the greenhouse steel skeleton sections under non-uniform snow load. The results showed that, under the same load condition, the maximum stress in the four skeleton materials was all located at the connection of the transverse tension bar and the front roof. In addition, under same load condition, the greenhouse skeleton with elliptic tube presented the smallest cross-sectional displacement between the different materials tested. The effect of increasing the size of the greenhouse frame was better than that of increasing the greenhouse material thickness. All this work will provide theoretical guidance to the material selection of this structure.