Meta-learning prediction of physical and chemical properties of magnetized water and fertilizer based on LSTM
Abstract Background Due to the high cost of data collection for magnetization detection of media, the sample size is limited, it is not suitable to use deep learning method to predict its change trend. The prediction of physical and chemical properties of magnetized water and fertilizer (PCPMWF) by...
Enregistré dans:
Auteurs principaux: | Jing Nie, Nianyi Wang, Jingbin Li, Kang Wang, Hongkun Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
BMC
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6b9f7a9f7272482e9f3561aa2b7cb0d5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Effects of light emitting diode lights on plant growth, development and traits a meta-analysis
par: Yuanchun Ma, et autres
Publié: (2021) -
A Study of Dairy Farm Technical Efficiency Using Meta-Regression: An International Perspective
Publié: (2009) -
Studies on Effect of Chemical Preservatives on Physico-Chemical Changes of Beverages in Lime and Ginger Juice with their Combinations
par: Ravishankar Lanjhiyana, et autres
Publié: (2010) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
par: Balduíno César Mateus, et autres
Publié: (2021) -
Water Deficit Modulates the CO2 Fertilization Effect on Plant Gas Exchange and Leaf-Level Water Use Efficiency: A Meta-Analysis
par: Fei Li, et autres
Publié: (2021)