Fingerlings mass estimation: A comparison between deep and shallow learning algorithms

The paper presents some results regarding the automatic mass estimation of Pintado Real fingerlings, using machine learning techniques to support the fish production process. For this purpose, an image dataset called FISHCV1206FSEG, was created which is composed of 1206 images of fingerlings with th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adair da Silva Oliveira Junior, Diego André Sant’Ana, Marcio Carneiro Brito Pache, Vanir Garcia, Vanessa Aparecida de Moares Weber, Gilberto Astolfi, Fabricio de Lima Weber, Geazy Vilharva Menezes, Gabriel Kirsten Menezes, Pedro Lucas França Albuquerque, Celso Soares Costa, Eduardo Quirino Arguelho de Queiroz, João Victor Araújo Rozales, Milena Wolff Ferreira, Marco Hiroshi Naka, Hemerson Pistori
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/6ba35f5a32c547899ff4f496b328e284
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6ba35f5a32c547899ff4f496b328e284
record_format dspace
spelling oai:doaj.org-article:6ba35f5a32c547899ff4f496b328e2842021-11-20T05:16:19ZFingerlings mass estimation: A comparison between deep and shallow learning algorithms2772-375510.1016/j.atech.2021.100020https://doaj.org/article/6ba35f5a32c547899ff4f496b328e2842021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2772375521000204https://doaj.org/toc/2772-3755The paper presents some results regarding the automatic mass estimation of Pintado Real fingerlings, using machine learning techniques to support the fish production process. For this purpose, an image dataset called FISHCV1206FSEG, was created which is composed of 1206 images of fingerlings with their respective annotated masses. Through the fish contours, the area and perimeter were extracted, and submitted to the J48, SVM, and KNN classification algorithms and a linear regression algorithm. The images were also submitted to ResNet50, InceptionV3, Exception, VGG16, and VGG19 convolutional neural networks. As a result, the classification algorithm J48 reached an accuracy of 58.2% and a linear regression model capable of predicting the mass of a Pintado Real fingerling with a mean squared error of 1.5 g. The convolutional neural network ResNet50 obtained an accuracy of 67.08%. We can highlight the contributions of this work through the presentation of a methodology to classify the mass of fingerlings in a non-invasive way and by the analyses and comparing results of different machine learning algorithms for classification and regression.Adair da Silva Oliveira JuniorDiego André Sant’AnaMarcio Carneiro Brito PacheVanir GarciaVanessa Aparecida de Moares WeberGilberto AstolfiFabricio de Lima WeberGeazy Vilharva MenezesGabriel Kirsten MenezesPedro Lucas França AlbuquerqueCelso Soares CostaEduardo Quirino Arguelho de QueirozJoão Victor Araújo RozalesMilena Wolff FerreiraMarco Hiroshi NakaHemerson PistoriElsevierarticleFishClassificationMass estimatePintado realComputer visionAgriculture (General)S1-972Agricultural industriesHD9000-9495ENSmart Agricultural Technology, Vol 1, Iss , Pp 100020- (2021)
institution DOAJ
collection DOAJ
language EN
topic Fish
Classification
Mass estimate
Pintado real
Computer vision
Agriculture (General)
S1-972
Agricultural industries
HD9000-9495
spellingShingle Fish
Classification
Mass estimate
Pintado real
Computer vision
Agriculture (General)
S1-972
Agricultural industries
HD9000-9495
Adair da Silva Oliveira Junior
Diego André Sant’Ana
Marcio Carneiro Brito Pache
Vanir Garcia
Vanessa Aparecida de Moares Weber
Gilberto Astolfi
Fabricio de Lima Weber
Geazy Vilharva Menezes
Gabriel Kirsten Menezes
Pedro Lucas França Albuquerque
Celso Soares Costa
Eduardo Quirino Arguelho de Queiroz
João Victor Araújo Rozales
Milena Wolff Ferreira
Marco Hiroshi Naka
Hemerson Pistori
Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
description The paper presents some results regarding the automatic mass estimation of Pintado Real fingerlings, using machine learning techniques to support the fish production process. For this purpose, an image dataset called FISHCV1206FSEG, was created which is composed of 1206 images of fingerlings with their respective annotated masses. Through the fish contours, the area and perimeter were extracted, and submitted to the J48, SVM, and KNN classification algorithms and a linear regression algorithm. The images were also submitted to ResNet50, InceptionV3, Exception, VGG16, and VGG19 convolutional neural networks. As a result, the classification algorithm J48 reached an accuracy of 58.2% and a linear regression model capable of predicting the mass of a Pintado Real fingerling with a mean squared error of 1.5 g. The convolutional neural network ResNet50 obtained an accuracy of 67.08%. We can highlight the contributions of this work through the presentation of a methodology to classify the mass of fingerlings in a non-invasive way and by the analyses and comparing results of different machine learning algorithms for classification and regression.
format article
author Adair da Silva Oliveira Junior
Diego André Sant’Ana
Marcio Carneiro Brito Pache
Vanir Garcia
Vanessa Aparecida de Moares Weber
Gilberto Astolfi
Fabricio de Lima Weber
Geazy Vilharva Menezes
Gabriel Kirsten Menezes
Pedro Lucas França Albuquerque
Celso Soares Costa
Eduardo Quirino Arguelho de Queiroz
João Victor Araújo Rozales
Milena Wolff Ferreira
Marco Hiroshi Naka
Hemerson Pistori
author_facet Adair da Silva Oliveira Junior
Diego André Sant’Ana
Marcio Carneiro Brito Pache
Vanir Garcia
Vanessa Aparecida de Moares Weber
Gilberto Astolfi
Fabricio de Lima Weber
Geazy Vilharva Menezes
Gabriel Kirsten Menezes
Pedro Lucas França Albuquerque
Celso Soares Costa
Eduardo Quirino Arguelho de Queiroz
João Victor Araújo Rozales
Milena Wolff Ferreira
Marco Hiroshi Naka
Hemerson Pistori
author_sort Adair da Silva Oliveira Junior
title Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
title_short Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
title_full Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
title_fullStr Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
title_full_unstemmed Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
title_sort fingerlings mass estimation: a comparison between deep and shallow learning algorithms
publisher Elsevier
publishDate 2021
url https://doaj.org/article/6ba35f5a32c547899ff4f496b328e284
work_keys_str_mv AT adairdasilvaoliveirajunior fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT diegoandresantana fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT marciocarneirobritopache fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT vanirgarcia fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT vanessaaparecidademoaresweber fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT gilbertoastolfi fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT fabriciodelimaweber fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT geazyvilharvamenezes fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT gabrielkirstenmenezes fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT pedrolucasfrancaalbuquerque fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT celsosoarescosta fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT eduardoquirinoarguelhodequeiroz fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT joaovictoraraujorozales fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT milenawolffferreira fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT marcohiroshinaka fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
AT hemersonpistori fingerlingsmassestimationacomparisonbetweendeepandshallowlearningalgorithms
_version_ 1718419487501320192