Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers
This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 µm) and commercial titanium foils (5 µm). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 °C, dw...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6ba8af817c5e452eb6a54e258e0979c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6ba8af817c5e452eb6a54e258e0979c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6ba8af817c5e452eb6a54e258e0979c52021-11-25T18:21:31ZJoining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers10.3390/met111117282075-4701https://doaj.org/article/6ba8af817c5e452eb6a54e258e0979c52021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4701/11/11/1728https://doaj.org/toc/2075-4701This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 µm) and commercial titanium foils (5 µm). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 °C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 °C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 °C for 60 min and 1000 °C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 ± 14 MPa for the joint processed without interlayer and 49 ± 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.Marcionilo SilvaAna S. RamosSónia SimõesMDPI AGarticlediffusion bondingthin filmtitaniumAl<sub>2</sub>O<sub>3</sub>sputteringMining engineering. MetallurgyTN1-997ENMetals, Vol 11, Iss 1728, p 1728 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
diffusion bonding thin film titanium Al<sub>2</sub>O<sub>3</sub> sputtering Mining engineering. Metallurgy TN1-997 |
spellingShingle |
diffusion bonding thin film titanium Al<sub>2</sub>O<sub>3</sub> sputtering Mining engineering. Metallurgy TN1-997 Marcionilo Silva Ana S. Ramos Sónia Simões Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
description |
This work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 µm) and commercial titanium foils (5 µm). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 °C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 °C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 °C for 60 min and 1000 °C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 ± 14 MPa for the joint processed without interlayer and 49 ± 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time. |
format |
article |
author |
Marcionilo Silva Ana S. Ramos Sónia Simões |
author_facet |
Marcionilo Silva Ana S. Ramos Sónia Simões |
author_sort |
Marcionilo Silva |
title |
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
title_short |
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
title_full |
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
title_fullStr |
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
title_full_unstemmed |
Joining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayers |
title_sort |
joining ti6al4v to alumina by diffusion bonding using titanium interlayers |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6ba8af817c5e452eb6a54e258e0979c5 |
work_keys_str_mv |
AT marcionilosilva joiningti6al4vtoaluminabydiffusionbondingusingtitaniuminterlayers AT anasramos joiningti6al4vtoaluminabydiffusionbondingusingtitaniuminterlayers AT soniasimoes joiningti6al4vtoaluminabydiffusionbondingusingtitaniuminterlayers |
_version_ |
1718411263241879552 |