Neural Network Physically Unclonable Function: A Trainable Physically Unclonable Function System with Unassailability against Deep Learning Attacks Using Memristor Array
The dissemination of edge devices drives new requirements for security primitives for privacy protection and chip authentication. Memristors are promising entropy sources for realizing hardware‐based security primitives due to their intrinsic randomness and stochastic properties. With the adoption o...
Guardado en:
Autores principales: | Junkyu Park, Yoonji Lee, Hakcheon Jeong, Shinhyun Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6bc8ebf71f8b468eab3f7d56c64aa47b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Embedding delay‐based physical unclonable functions in networks‐on‐chip
por: Prasad Nagabhushanamgari, et al.
Publicado: (2021) -
Digitization Algorithms in Ring Oscillator Physically Unclonable Functions as a Main Factor Achieving Hardware Security
por: Guillermo Diez-Senorans, et al.
Publicado: (2021) -
Energy‐Efficient Memristive Euclidean Distance Engine for Brain‐Inspired Competitive Learning
por: Houji Zhou, et al.
Publicado: (2021) -
A Novel Key Generation Method for Group-Based Physically Unclonable Function Designs
por: Saeed Abdolinezhad, et al.
Publicado: (2021) -
Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
por: Rohit Abraham John, et al.
Publicado: (2021)