Neural Network Physically Unclonable Function: A Trainable Physically Unclonable Function System with Unassailability against Deep Learning Attacks Using Memristor Array
The dissemination of edge devices drives new requirements for security primitives for privacy protection and chip authentication. Memristors are promising entropy sources for realizing hardware‐based security primitives due to their intrinsic randomness and stochastic properties. With the adoption o...
Enregistré dans:
Auteurs principaux: | Junkyu Park, Yoonji Lee, Hakcheon Jeong, Shinhyun Choi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6bc8ebf71f8b468eab3f7d56c64aa47b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Embedding delay‐based physical unclonable functions in networks‐on‐chip
par: Prasad Nagabhushanamgari, et autres
Publié: (2021) -
Digitization Algorithms in Ring Oscillator Physically Unclonable Functions as a Main Factor Achieving Hardware Security
par: Guillermo Diez-Senorans, et autres
Publié: (2021) -
Energy‐Efficient Memristive Euclidean Distance Engine for Brain‐Inspired Competitive Learning
par: Houji Zhou, et autres
Publié: (2021) -
A Novel Key Generation Method for Group-Based Physically Unclonable Function Designs
par: Saeed Abdolinezhad, et autres
Publié: (2021) -
Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
par: Rohit Abraham John, et autres
Publié: (2021)