Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection

ABSTRACT Neuropilin-1 (Nrp1) plays important roles in axonal guidance in neurons and in the growth of new blood vessels. There is also a growing appreciation for roles played by neuropilin-1 in the immune response. This molecule is important for the function of regulatory T cells; however, roles in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ji Young Hwang, Yanbo Sun, Christopher R. Carroll, Edward J. Usherwood
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/6bd1a1c403354de7b08547598013d67a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6bd1a1c403354de7b08547598013d67a
record_format dspace
spelling oai:doaj.org-article:6bd1a1c403354de7b08547598013d67a2021-11-15T15:22:20ZNeuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection10.1128/mSphere.00221-192379-5042https://doaj.org/article/6bd1a1c403354de7b08547598013d67a2019-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00221-19https://doaj.org/toc/2379-5042ABSTRACT Neuropilin-1 (Nrp1) plays important roles in axonal guidance in neurons and in the growth of new blood vessels. There is also a growing appreciation for roles played by neuropilin-1 in the immune response. This molecule is important for the function of regulatory T cells; however, roles in other T cell populations have not been identified. Here, we show that neuropilin-1 is expressed during the peak of the antiviral CD8 T cell response during murine gammaherpesvirus infection. Using a conditional knockout model, we deleted Nrp1 either before infection or after CD8 T cell memory had been established. We found that deletion of Nrp1 skewed the acute CD8 T cell response toward a memory precursor-like phenotype; however, the ensuing resting memory response was similar regardless of Nrp1 expression. Interestingly, Nrp1 deletion had differing effects on the recall response depending on the timing of deletion. When deleted before infection, Nrp1 deficiency inhibited the secondary response. Deletion just prior to reexposure to virus led to an enhanced secondary response. Interestingly, these effects were observed only in mice infected with a persistent strain of murine gammaherpesvirus and not with a nonpersistent mutant strain. These data highlight a multifaceted role for neuropilin-1 in memory CD8 T cell differentiation, dependent upon the stage of the T cell response and characteristics of the infectious agent. Several therapeutic anticancer therapies focus on inhibition of Nrp1 to restrict tumor growth, and so knowledge of how Nrp1 blockade may affect the CD8 T cell response will provide a better understanding of treatment consequences. IMPORTANCE CD8 T cell responses are critical to control both virus infections and tumors. The ability of these cells to persist for long periods of time can result in lifelong immunity, as relatively small populations of cells can expand rapidly to counter reexposure to the same insult. Understanding the molecules necessary for this rapid secondary expansion is critical if we are to develop therapies that can provide lifelong protection. This report shows an important and complex role for the molecule neuropilin-1 in the secondary response. Several cancer therapies targeting neuropilin-1 are in development, and this work will lead to better understanding of the effect these therapies could have upon the protective CD8 T cell response.Ji Young HwangYanbo SunChristopher R. CarrollEdward J. UsherwoodAmerican Society for MicrobiologyarticleKaposi’s sarcoma-associated herpesvirusT cellsimmune memoryMicrobiologyQR1-502ENmSphere, Vol 4, Iss 3 (2019)
institution DOAJ
collection DOAJ
language EN
topic Kaposi’s sarcoma-associated herpesvirus
T cells
immune memory
Microbiology
QR1-502
spellingShingle Kaposi’s sarcoma-associated herpesvirus
T cells
immune memory
Microbiology
QR1-502
Ji Young Hwang
Yanbo Sun
Christopher R. Carroll
Edward J. Usherwood
Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
description ABSTRACT Neuropilin-1 (Nrp1) plays important roles in axonal guidance in neurons and in the growth of new blood vessels. There is also a growing appreciation for roles played by neuropilin-1 in the immune response. This molecule is important for the function of regulatory T cells; however, roles in other T cell populations have not been identified. Here, we show that neuropilin-1 is expressed during the peak of the antiviral CD8 T cell response during murine gammaherpesvirus infection. Using a conditional knockout model, we deleted Nrp1 either before infection or after CD8 T cell memory had been established. We found that deletion of Nrp1 skewed the acute CD8 T cell response toward a memory precursor-like phenotype; however, the ensuing resting memory response was similar regardless of Nrp1 expression. Interestingly, Nrp1 deletion had differing effects on the recall response depending on the timing of deletion. When deleted before infection, Nrp1 deficiency inhibited the secondary response. Deletion just prior to reexposure to virus led to an enhanced secondary response. Interestingly, these effects were observed only in mice infected with a persistent strain of murine gammaherpesvirus and not with a nonpersistent mutant strain. These data highlight a multifaceted role for neuropilin-1 in memory CD8 T cell differentiation, dependent upon the stage of the T cell response and characteristics of the infectious agent. Several therapeutic anticancer therapies focus on inhibition of Nrp1 to restrict tumor growth, and so knowledge of how Nrp1 blockade may affect the CD8 T cell response will provide a better understanding of treatment consequences. IMPORTANCE CD8 T cell responses are critical to control both virus infections and tumors. The ability of these cells to persist for long periods of time can result in lifelong immunity, as relatively small populations of cells can expand rapidly to counter reexposure to the same insult. Understanding the molecules necessary for this rapid secondary expansion is critical if we are to develop therapies that can provide lifelong protection. This report shows an important and complex role for the molecule neuropilin-1 in the secondary response. Several cancer therapies targeting neuropilin-1 are in development, and this work will lead to better understanding of the effect these therapies could have upon the protective CD8 T cell response.
format article
author Ji Young Hwang
Yanbo Sun
Christopher R. Carroll
Edward J. Usherwood
author_facet Ji Young Hwang
Yanbo Sun
Christopher R. Carroll
Edward J. Usherwood
author_sort Ji Young Hwang
title Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
title_short Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
title_full Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
title_fullStr Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
title_full_unstemmed Neuropilin-1 Regulates the Secondary CD8 T Cell Response to Virus Infection
title_sort neuropilin-1 regulates the secondary cd8 t cell response to virus infection
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/6bd1a1c403354de7b08547598013d67a
work_keys_str_mv AT jiyounghwang neuropilin1regulatesthesecondarycd8tcellresponsetovirusinfection
AT yanbosun neuropilin1regulatesthesecondarycd8tcellresponsetovirusinfection
AT christopherrcarroll neuropilin1regulatesthesecondarycd8tcellresponsetovirusinfection
AT edwardjusherwood neuropilin1regulatesthesecondarycd8tcellresponsetovirusinfection
_version_ 1718428012559466496