Controlling the transverse proton relaxivity of magnetic graphene oxide
Abstract The engineering of materials with controlled magnetic properties by means other than a magnetic field is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6bd395a6aff64c12ac4729ed2a5c3f21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6bd395a6aff64c12ac4729ed2a5c3f21 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6bd395a6aff64c12ac4729ed2a5c3f212021-12-02T15:09:46ZControlling the transverse proton relaxivity of magnetic graphene oxide10.1038/s41598-019-42093-12045-2322https://doaj.org/article/6bd395a6aff64c12ac4729ed2a5c3f212019-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-42093-1https://doaj.org/toc/2045-2322Abstract The engineering of materials with controlled magnetic properties by means other than a magnetic field is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with tunable core magnetism and magnetic resonance transverse relaxivity (r2). These tunable properties are obtained by varying the IO content on GO. The MGO series exhibits r2 values analogous to those observed in conventional single core and cluster forms of IO in different size regimes—motional averaging regime (MAR), static dephasing regime (SDR), and echo-limiting regime (ELR) or slow motion regime (SMR). The maximum r2 of 162 ± 5.703 mM−1s−1 is attained for MGO with 28 weight percent (wt%) content of IO on GO and hydrodynamic diameter of 414 nm, which is associated with the SDR. These findings demonstrate the clear potential of magnetic graphene oxide for magnetic resonance imaging (MRI) applications.Bibek ThapaDaysi Diaz-DiestraDayra Badillo-DiazRohit Kumar SharmaKiran DasariShalini KumariMikel B. HolcombJuan Beltran-HuaracBrad R. WeinerGerardo MorellNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-11 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Bibek Thapa Daysi Diaz-Diestra Dayra Badillo-Diaz Rohit Kumar Sharma Kiran Dasari Shalini Kumari Mikel B. Holcomb Juan Beltran-Huarac Brad R. Weiner Gerardo Morell Controlling the transverse proton relaxivity of magnetic graphene oxide |
description |
Abstract The engineering of materials with controlled magnetic properties by means other than a magnetic field is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with tunable core magnetism and magnetic resonance transverse relaxivity (r2). These tunable properties are obtained by varying the IO content on GO. The MGO series exhibits r2 values analogous to those observed in conventional single core and cluster forms of IO in different size regimes—motional averaging regime (MAR), static dephasing regime (SDR), and echo-limiting regime (ELR) or slow motion regime (SMR). The maximum r2 of 162 ± 5.703 mM−1s−1 is attained for MGO with 28 weight percent (wt%) content of IO on GO and hydrodynamic diameter of 414 nm, which is associated with the SDR. These findings demonstrate the clear potential of magnetic graphene oxide for magnetic resonance imaging (MRI) applications. |
format |
article |
author |
Bibek Thapa Daysi Diaz-Diestra Dayra Badillo-Diaz Rohit Kumar Sharma Kiran Dasari Shalini Kumari Mikel B. Holcomb Juan Beltran-Huarac Brad R. Weiner Gerardo Morell |
author_facet |
Bibek Thapa Daysi Diaz-Diestra Dayra Badillo-Diaz Rohit Kumar Sharma Kiran Dasari Shalini Kumari Mikel B. Holcomb Juan Beltran-Huarac Brad R. Weiner Gerardo Morell |
author_sort |
Bibek Thapa |
title |
Controlling the transverse proton relaxivity of magnetic graphene oxide |
title_short |
Controlling the transverse proton relaxivity of magnetic graphene oxide |
title_full |
Controlling the transverse proton relaxivity of magnetic graphene oxide |
title_fullStr |
Controlling the transverse proton relaxivity of magnetic graphene oxide |
title_full_unstemmed |
Controlling the transverse proton relaxivity of magnetic graphene oxide |
title_sort |
controlling the transverse proton relaxivity of magnetic graphene oxide |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/6bd395a6aff64c12ac4729ed2a5c3f21 |
work_keys_str_mv |
AT bibekthapa controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT daysidiazdiestra controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT dayrabadillodiaz controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT rohitkumarsharma controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT kirandasari controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT shalinikumari controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT mikelbholcomb controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT juanbeltranhuarac controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT bradrweiner controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide AT gerardomorell controllingthetransverseprotonrelaxivityofmagneticgrapheneoxide |
_version_ |
1718387757396525056 |