Dual-Channel Convolutional Neural Network for Bare Surface Soil Moisture Inversion Based on Polarimetric Scattering Models
The polarimetric synthetic aperture radar (PolSAR) can be used to obtain soil moisture by inverting scattering models at high resolution. The convolutional neural network (CNN) has been recently introduced to estimate soil roughness for PolSAR data, which need to be driven by a large amount of data....
Guardado en:
Autores principales: | Qiang Yin, Junlang Li, Fei Ma, Deliang Xiang, Fan Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6bd9a50aefb84410a63bcbdee0b09dfc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Polarimetric SAR Speckle Filtering Using a Nonlocal Weighted LMMSE Filter
por: Yinbin Shen, et al.
Publicado: (2021) -
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
por: Matías Ernesto Barber, et al.
Publicado: (2021) -
A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
por: Liming Pu, et al.
Publicado: (2021) -
First Results on Wake Detection in SAR Images by Deep Learning
por: Roberto Del Prete, et al.
Publicado: (2021) -
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
por: Yu Mao, et al.
Publicado: (2021)