Dual-Channel Convolutional Neural Network for Bare Surface Soil Moisture Inversion Based on Polarimetric Scattering Models
The polarimetric synthetic aperture radar (PolSAR) can be used to obtain soil moisture by inverting scattering models at high resolution. The convolutional neural network (CNN) has been recently introduced to estimate soil roughness for PolSAR data, which need to be driven by a large amount of data....
Enregistré dans:
Auteurs principaux: | Qiang Yin, Junlang Li, Fei Ma, Deliang Xiang, Fan Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/6bd9a50aefb84410a63bcbdee0b09dfc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Polarimetric SAR Speckle Filtering Using a Nonlocal Weighted LMMSE Filter
par: Yinbin Shen, et autres
Publié: (2021) -
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
par: Matías Ernesto Barber, et autres
Publié: (2021) -
A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
par: Liming Pu, et autres
Publié: (2021) -
First Results on Wake Detection in SAR Images by Deep Learning
par: Roberto Del Prete, et autres
Publié: (2021) -
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
par: Yu Mao, et autres
Publié: (2021)