Machine learning to reveal hidden risk combinations for the trajectory of posttraumatic stress disorder symptoms
Abstract The nature of the recovery process of posttraumatic stress disorder (PTSD) symptoms is multifactorial. The Massive Parallel Limitless-Arity Multiple-testing Procedure (MP-LAMP), which was developed to detect significant combinational risk factors comprehensively, was utilized to reveal hidd...
Guardado en:
Autores principales: | Yuta Takahashi, Kazuki Yoshizoe, Masao Ueki, Gen Tamiya, Yu Zhiqian, Yusuke Utsumi, Atsushi Sakuma, Koji Tsuda, Atsushi Hozawa, Ichiro Tsuji, Hiroaki Tomita |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c136c6f80c245f9a63b3ff51df10386 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of type of reconstructed residence on social participation and mental health of population displaced by disasters
por: Tomomi Suzuki, et al.
Publicado: (2021) -
Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models
por: Concepción Violán, et al.
Publicado: (2020) -
The Hidden Dimension of Social Norms in Ibibio: Tri-Tangential Trajectory of Ibibio Indigenous Knowledge on Morality
por: Essien D. Essien
Publicado: (2016) -
Map-Matching Using Hidden Markov Model and Path Choice Preferences under Sparse Trajectory
por: Zhengang Xiong, et al.
Publicado: (2021) -
Temperature dependence of amorphous magnesium carbonate structure studied by PDF and XAFS analyses
por: Gen-ichiro Yamamoto, et al.
Publicado: (2021)