Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks

Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rohit Abraham John, Jyotibdha Acharya, Chao Zhu, Abhijith Surendran, Sumon Kumar Bose, Apoorva Chaturvedi, Nidhi Tiwari, Yang Gao, Yongmin He, Keke K. Zhang, Manzhang Xu, Wei Lin Leong, Zheng Liu, Arindam Basu, Nripan Mathews
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing.