Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory co...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c1806d8270d4d5db127aa7ebd08d4ee |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c1806d8270d4d5db127aa7ebd08d4ee2021-12-02T17:12:24ZOptogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks10.1038/s41467-020-16985-02041-1723https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16985-0https://doaj.org/toc/2041-1723Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing.Rohit Abraham JohnJyotibdha AcharyaChao ZhuAbhijith SurendranSumon Kumar BoseApoorva ChaturvediNidhi TiwariYang GaoYongmin HeKeke K. ZhangManzhang XuWei Lin LeongZheng LiuArindam BasuNripan MathewsNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Rohit Abraham John Jyotibdha Acharya Chao Zhu Abhijith Surendran Sumon Kumar Bose Apoorva Chaturvedi Nidhi Tiwari Yang Gao Yongmin He Keke K. Zhang Manzhang Xu Wei Lin Leong Zheng Liu Arindam Basu Nripan Mathews Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
description |
Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing. |
format |
article |
author |
Rohit Abraham John Jyotibdha Acharya Chao Zhu Abhijith Surendran Sumon Kumar Bose Apoorva Chaturvedi Nidhi Tiwari Yang Gao Yongmin He Keke K. Zhang Manzhang Xu Wei Lin Leong Zheng Liu Arindam Basu Nripan Mathews |
author_facet |
Rohit Abraham John Jyotibdha Acharya Chao Zhu Abhijith Surendran Sumon Kumar Bose Apoorva Chaturvedi Nidhi Tiwari Yang Gao Yongmin He Keke K. Zhang Manzhang Xu Wei Lin Leong Zheng Liu Arindam Basu Nripan Mathews |
author_sort |
Rohit Abraham John |
title |
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
title_short |
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
title_full |
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
title_fullStr |
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
title_full_unstemmed |
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
title_sort |
optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee |
work_keys_str_mv |
AT rohitabrahamjohn optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT jyotibdhaacharya optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT chaozhu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT abhijithsurendran optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT sumonkumarbose optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT apoorvachaturvedi optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT nidhitiwari optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT yanggao optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT yongminhe optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT kekekzhang optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT manzhangxu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT weilinleong optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT zhengliu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT arindambasu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks AT nripanmathews optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks |
_version_ |
1718381382916374528 |