Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks

Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rohit Abraham John, Jyotibdha Acharya, Chao Zhu, Abhijith Surendran, Sumon Kumar Bose, Apoorva Chaturvedi, Nidhi Tiwari, Yang Gao, Yongmin He, Keke K. Zhang, Manzhang Xu, Wei Lin Leong, Zheng Liu, Arindam Basu, Nripan Mathews
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6c1806d8270d4d5db127aa7ebd08d4ee
record_format dspace
spelling oai:doaj.org-article:6c1806d8270d4d5db127aa7ebd08d4ee2021-12-02T17:12:24ZOptogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks10.1038/s41467-020-16985-02041-1723https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16985-0https://doaj.org/toc/2041-1723Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing.Rohit Abraham JohnJyotibdha AcharyaChao ZhuAbhijith SurendranSumon Kumar BoseApoorva ChaturvediNidhi TiwariYang GaoYongmin HeKeke K. ZhangManzhang XuWei Lin LeongZheng LiuArindam BasuNripan MathewsNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Rohit Abraham John
Jyotibdha Acharya
Chao Zhu
Abhijith Surendran
Sumon Kumar Bose
Apoorva Chaturvedi
Nidhi Tiwari
Yang Gao
Yongmin He
Keke K. Zhang
Manzhang Xu
Wei Lin Leong
Zheng Liu
Arindam Basu
Nripan Mathews
Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
description Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory computing.
format article
author Rohit Abraham John
Jyotibdha Acharya
Chao Zhu
Abhijith Surendran
Sumon Kumar Bose
Apoorva Chaturvedi
Nidhi Tiwari
Yang Gao
Yongmin He
Keke K. Zhang
Manzhang Xu
Wei Lin Leong
Zheng Liu
Arindam Basu
Nripan Mathews
author_facet Rohit Abraham John
Jyotibdha Acharya
Chao Zhu
Abhijith Surendran
Sumon Kumar Bose
Apoorva Chaturvedi
Nidhi Tiwari
Yang Gao
Yongmin He
Keke K. Zhang
Manzhang Xu
Wei Lin Leong
Zheng Liu
Arindam Basu
Nripan Mathews
author_sort Rohit Abraham John
title Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
title_short Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
title_full Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
title_fullStr Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
title_full_unstemmed Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
title_sort optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee
work_keys_str_mv AT rohitabrahamjohn optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT jyotibdhaacharya optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT chaozhu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT abhijithsurendran optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT sumonkumarbose optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT apoorvachaturvedi optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT nidhitiwari optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT yanggao optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT yongminhe optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT kekekzhang optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT manzhangxu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT weilinleong optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT zhengliu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT arindambasu optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
AT nripanmathews optogeneticsinspiredtransitionmetaldichalcogenideneuristorsforinmemorydeeprecurrentneuralnetworks
_version_ 1718381382916374528