Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks
Accomplishing complex cognitive tasks such as speech recognition calls for artificial intelligence hardware with high computing precision. John et al. propose deep recurrent neural networks based on optoelectronic transition metal dichalcogenide memristors with high weight precision for in-memory co...
Guardado en:
Autores principales: | Rohit Abraham John, Jyotibdha Acharya, Chao Zhu, Abhijith Surendran, Sumon Kumar Bose, Apoorva Chaturvedi, Nidhi Tiwari, Yang Gao, Yongmin He, Keke K. Zhang, Manzhang Xu, Wei Lin Leong, Zheng Liu, Arindam Basu, Nripan Mathews |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c1806d8270d4d5db127aa7ebd08d4ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics
por: Rohit Abraham John, et al.
Publicado: (2020) -
Halide perovskite memristors as flexible and reconfigurable physical unclonable functions
por: Rohit Abraham John, et al.
Publicado: (2021) -
Defect engineered bioactive transition metals dichalcogenides quantum dots
por: Xianguang Ding, et al.
Publicado: (2019) -
Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers
por: Sabyasachi Tiwari, et al.
Publicado: (2021) -
Topological superconductivity in monolayer transition metal dichalcogenides
por: Yi-Ting Hsu, et al.
Publicado: (2017)