Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor

Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is larg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Riza Adrianti Supono, Muhammad Azis Suprayogi
Formato: article
Lenguaje:ID
Publicado: Ikatan Ahli Indormatika Indonesia 2021
Materias:
Acceso en línea:https://doaj.org/article/6c203faf34ea4306ad7fdbb0a8c24513
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6c203faf34ea4306ad7fdbb0a8c24513
record_format dspace
spelling oai:doaj.org-article:6c203faf34ea4306ad7fdbb0a8c245132021-11-16T13:16:12ZPerbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor2580-076010.29207/resti.v5i5.3403https://doaj.org/article/6c203faf34ea4306ad7fdbb0a8c245132021-10-01T00:00:00Zhttp://jurnal.iaii.or.id/index.php/RESTI/article/view/3403https://doaj.org/toc/2580-0760Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is large. Helpdesk text classification becomes important to automatically distribute tickets to the appropriate destination units in a short time. This study was conducted to compare the performance of helpdesk text classification at the Directorate General of State Assets of the Ministry of Finance using the K-Nearest Neighbor (KNN) method with the TF-ABS and TF-IDF weighting methods. The research was conducted by collecting complaint documents, preprocessing, word weighting, feature reduction, classification, and testing. Classification using KNN with parameters n_neighbor (k) namely k=1, k=3, k=5, k=7, k=9, k=11, k=13, k=15, k=17, and k=19 to classify 10,537 helpdesk texts into 8 categories. The test uses a confusion matrix based on the accuracy value and score-f1. The test results show that the TF-ABS weighting method is better than TF-IDF with the highest accuracy value of 90.04% at 15% and k=3.Riza Adrianti SuponoMuhammad Azis SuprayogiIkatan Ahli Indormatika Indonesiaarticlehelpdeskterm weightingtext classificationtf-abstf-idfSystems engineeringTA168Information technologyT58.5-58.64IDJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 5, Iss 5, Pp 911-918 (2021)
institution DOAJ
collection DOAJ
language ID
topic helpdesk
term weighting
text classification
tf-abs
tf-idf
Systems engineering
TA168
Information technology
T58.5-58.64
spellingShingle helpdesk
term weighting
text classification
tf-abs
tf-idf
Systems engineering
TA168
Information technology
T58.5-58.64
Riza Adrianti Supono
Muhammad Azis Suprayogi
Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
description Distribution of tickets to the destination unit is a very important function in the helpdesk application, but the process of distributing tickets manually by admin officers has drawbacks, namely ticket distribution errors can occur and increase ticket completion time if the number of tickets is large. Helpdesk text classification becomes important to automatically distribute tickets to the appropriate destination units in a short time. This study was conducted to compare the performance of helpdesk text classification at the Directorate General of State Assets of the Ministry of Finance using the K-Nearest Neighbor (KNN) method with the TF-ABS and TF-IDF weighting methods. The research was conducted by collecting complaint documents, preprocessing, word weighting, feature reduction, classification, and testing. Classification using KNN with parameters n_neighbor (k) namely k=1, k=3, k=5, k=7, k=9, k=11, k=13, k=15, k=17, and k=19 to classify 10,537 helpdesk texts into 8 categories. The test uses a confusion matrix based on the accuracy value and score-f1. The test results show that the TF-ABS weighting method is better than TF-IDF with the highest accuracy value of 90.04% at 15% and k=3.
format article
author Riza Adrianti Supono
Muhammad Azis Suprayogi
author_facet Riza Adrianti Supono
Muhammad Azis Suprayogi
author_sort Riza Adrianti Supono
title Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
title_short Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
title_full Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
title_fullStr Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
title_full_unstemmed Perbandingan Metode TF-ABS dan TF-IDF Pada Klasifikasi Teks Helpdesk Menggunakan K-Nearest Neighbor
title_sort perbandingan metode tf-abs dan tf-idf pada klasifikasi teks helpdesk menggunakan k-nearest neighbor
publisher Ikatan Ahli Indormatika Indonesia
publishDate 2021
url https://doaj.org/article/6c203faf34ea4306ad7fdbb0a8c24513
work_keys_str_mv AT rizaadriantisupono perbandinganmetodetfabsdantfidfpadaklasifikasitekshelpdeskmenggunakanknearestneighbor
AT muhammadazissuprayogi perbandinganmetodetfabsdantfidfpadaklasifikasitekshelpdeskmenggunakanknearestneighbor
_version_ 1718426486868803584