Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting
Abstract The northern hemisphere experienced an abrupt cold event ~ 8200 years ago (the 8.2 ka event) that was triggered by the release of meltwater into the Labrador Sea, and resulting in a weakening of the poleward oceanic heat transport. Although this event has been considered a possible analogue...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c2ae78533fd4434a3780a13838b44d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c2ae78533fd4434a3780a13838b44d7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c2ae78533fd4434a3780a13838b44d72021-12-02T13:34:47ZMagnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting10.1038/s41598-021-84709-52045-2322https://doaj.org/article/6c2ae78533fd4434a3780a13838b44d72021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84709-5https://doaj.org/toc/2045-2322Abstract The northern hemisphere experienced an abrupt cold event ~ 8200 years ago (the 8.2 ka event) that was triggered by the release of meltwater into the Labrador Sea, and resulting in a weakening of the poleward oceanic heat transport. Although this event has been considered a possible analogue for future ocean circulation changes due to the projected Greenland Ice Sheet (GIS) melting, large uncertainties in the amount and rate of freshwater released during the 8.2 ka event make such a comparison difficult. In this study, we compare sea surface temperatures and oxygen isotope ratios from 28 isotope-enabled model simulations with 35 paleoproxy records to constrain the meltwater released during the 8.2 ka event. Our results suggest that a combination of 5.3 m of meltwater in sea level rise equivalent (SLR) released over a thousand years, with a short intensification over ~ 130 years (an additional 2.2 m of equivalent SLR) due to routing of the Canadian river discharge, best reproduces the proxy anomalies. Our estimate is of the same order of magnitude as projected future GIS melting rates under the high emission scenario RCP8.5.Wilton AguiarKatrin J. MeissnerAlvaro MontenegroLuciana PradoIlana WainerAnders E. CarlsonMauricio M. MataNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Wilton Aguiar Katrin J. Meissner Alvaro Montenegro Luciana Prado Ilana Wainer Anders E. Carlson Mauricio M. Mata Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
description |
Abstract The northern hemisphere experienced an abrupt cold event ~ 8200 years ago (the 8.2 ka event) that was triggered by the release of meltwater into the Labrador Sea, and resulting in a weakening of the poleward oceanic heat transport. Although this event has been considered a possible analogue for future ocean circulation changes due to the projected Greenland Ice Sheet (GIS) melting, large uncertainties in the amount and rate of freshwater released during the 8.2 ka event make such a comparison difficult. In this study, we compare sea surface temperatures and oxygen isotope ratios from 28 isotope-enabled model simulations with 35 paleoproxy records to constrain the meltwater released during the 8.2 ka event. Our results suggest that a combination of 5.3 m of meltwater in sea level rise equivalent (SLR) released over a thousand years, with a short intensification over ~ 130 years (an additional 2.2 m of equivalent SLR) due to routing of the Canadian river discharge, best reproduces the proxy anomalies. Our estimate is of the same order of magnitude as projected future GIS melting rates under the high emission scenario RCP8.5. |
format |
article |
author |
Wilton Aguiar Katrin J. Meissner Alvaro Montenegro Luciana Prado Ilana Wainer Anders E. Carlson Mauricio M. Mata |
author_facet |
Wilton Aguiar Katrin J. Meissner Alvaro Montenegro Luciana Prado Ilana Wainer Anders E. Carlson Mauricio M. Mata |
author_sort |
Wilton Aguiar |
title |
Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
title_short |
Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
title_full |
Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
title_fullStr |
Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
title_full_unstemmed |
Magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future Greenland melting |
title_sort |
magnitude of the 8.2 ka event freshwater forcing based on stable isotope modelling and comparison to future greenland melting |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6c2ae78533fd4434a3780a13838b44d7 |
work_keys_str_mv |
AT wiltonaguiar magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT katrinjmeissner magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT alvaromontenegro magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT lucianaprado magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT ilanawainer magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT andersecarlson magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting AT mauriciommata magnitudeofthe82kaeventfreshwaterforcingbasedonstableisotopemodellingandcomparisontofuturegreenlandmelting |
_version_ |
1718392742027984896 |