Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting

In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stephan Thaler, Julija Zavadlav
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computational cost.