Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting

In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stephan Thaler, Julija Zavadlav
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6c34aa6706384e3b9d43a8893868e6f3
record_format dspace
spelling oai:doaj.org-article:6c34aa6706384e3b9d43a8893868e6f32021-11-28T12:33:07ZLearning neural network potentials from experimental data via Differentiable Trajectory Reweighting10.1038/s41467-021-27241-42041-1723https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f32021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27241-4https://doaj.org/toc/2041-1723In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computational cost.Stephan ThalerJulija ZavadlavNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Stephan Thaler
Julija Zavadlav
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
description In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computational cost.
format article
author Stephan Thaler
Julija Zavadlav
author_facet Stephan Thaler
Julija Zavadlav
author_sort Stephan Thaler
title Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
title_short Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
title_full Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
title_fullStr Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
title_full_unstemmed Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
title_sort learning neural network potentials from experimental data via differentiable trajectory reweighting
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3
work_keys_str_mv AT stephanthaler learningneuralnetworkpotentialsfromexperimentaldataviadifferentiabletrajectoryreweighting
AT julijazavadlav learningneuralnetworkpotentialsfromexperimentaldataviadifferentiabletrajectoryreweighting
_version_ 1718407894950477824