Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6c34aa6706384e3b9d43a8893868e6f3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6c34aa6706384e3b9d43a8893868e6f32021-11-28T12:33:07ZLearning neural network potentials from experimental data via Differentiable Trajectory Reweighting10.1038/s41467-021-27241-42041-1723https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f32021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27241-4https://doaj.org/toc/2041-1723In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computational cost.Stephan ThalerJulija ZavadlavNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Stephan Thaler Julija Zavadlav Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
description |
In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computational cost. |
format |
article |
author |
Stephan Thaler Julija Zavadlav |
author_facet |
Stephan Thaler Julija Zavadlav |
author_sort |
Stephan Thaler |
title |
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
title_short |
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
title_full |
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
title_fullStr |
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
title_full_unstemmed |
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting |
title_sort |
learning neural network potentials from experimental data via differentiable trajectory reweighting |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3 |
work_keys_str_mv |
AT stephanthaler learningneuralnetworkpotentialsfromexperimentaldataviadifferentiabletrajectoryreweighting AT julijazavadlav learningneuralnetworkpotentialsfromexperimentaldataviadifferentiabletrajectoryreweighting |
_version_ |
1718407894950477824 |