Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
In machine learning approaches relevant for chemical physics and material science, neural network potentials can be trained on the experimental data. The authors propose a training method applying trajectory reweighting instead of direct backpropagation for improved robustness and reduced computatio...
Guardado en:
Autores principales: | Stephan Thaler, Julija Zavadlav |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6c34aa6706384e3b9d43a8893868e6f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of multisensory reweighting is impaired for quiet stance control in children with developmental coordination disorder (DCD).
por: Woei-Nan Bair, et al.
Publicado: (2012) -
Order and interactions in DNA arrays: Multiscale molecular dynamics simulation
por: Julija Zavadlav, et al.
Publicado: (2017) -
Reweighting a Swedish health questionnaire survey using extensive population register and self-reported data for assessing and improving the validity of longitudinal associations.
por: Anton Nilsson, et al.
Publicado: (2021) -
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
por: Saad Zaghlul Saeed Al-Khayyt
Publicado: (2017) -
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking
por: Saad Zaghlul Saeed Al-Khayyt
Publicado: (2013)